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Abstract  This paper empirically shows that the combined effect of applying the selected feature subsets and 

optimized parameters on machine learning techniques significantly improves the accuracy for solar power prediction. 

To provide evidence, experiments are carried on in two phases. For all the experiments the machine learning 

techniques namely Least Median Square (LMS), Multilayer Perceptron (MLP) and Support Vector Machine (SVM) 

are used. In the first phase five well-known wrapper feature selection methods are used to obtain the prediction 

accuracy of machine learning techniques with selected feature subsets and default parameter settings. The 

experiments from the first phase demonstrate that holding the default parameters, LMS, MLP and SVM provides 

better prediction accuracy (i.e. reduced MAE and MASE) with selected feature subsets rather than without selected 

feature subsets. After getting improved prediction accuracy from the first phase, the second phase continues the 

experiments to optimize machine learning parameters and the prediction accuracy of those machine learning 

techniques are re-evaluated through adopting both the optimized parameter settings and selected feature subsets. The 

comparison between the results of two phases clearly shows that the later phase (i.e. machine learning techniques 

with selected feature subsets and optimized parameters) provides substantial improvement in the accuracy for solar 

power prediction than the earlier phase (i.e. machine learning techniques with selected feature subsets and default 

parameters). Experiments are carried out using reliable and real life historical meteorological data. The machine 

learning accuracy of solar radiation prediction is justified in terms of statistical error measurement and validation 

metrics. Experimental results of this paper facilitate to make a concrete verdict that providing more attention and 

effort towards the feature subset selection and machine learning parameter optimization (e.g. combined effect of 

selected feature subsets and optimized parameters on prediction accuracy which is investigated in this paper) can 

significantly contribute to improve the accuracy of solar power prediction. 
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1. Introduction 

Feature selection can be considered one of the main 

pre–processing steps of machine learning [1]. It 

contributes considerably by the reduction of dimension as 

well as eliminating inappropriate data. It is quite capable 

to improve learning accuracy in computational 

intelligence. The feature selection aspect is fairly 

significant for the reason that with the same training data 

it may happen that individual regression algorithm can 

perform better with different feature sub sets [2]. The 

success of machine learning on a particular task is affected 

by many factors. Among those factors first and foremost 

is the representation and quality of the instance data [3]. 

The training stage becomes critical with the existence of 

noisy, irrelevant and redundant data. Sometimes the real 

life data contain too much information among those very 

little is useful for desired purpose. Therefore, it is not 

important to include every piece of information from the 

raw data source for modelling. 

All the algorithms to perform feature selection consist 

of two common aspects. One is the search method which 

is actually a selection algorithm to generate designed 

feature subsets and attempts to reach the most 

advantageous. Another aspect is called evaluator which is 

basically an evaluation algorithm to make a decision about 

the goodness of the planned feature subset and finally 

returns the assessment about righteousness of the search 

method [4]. On the other hand, lacking of an appropriate 

stopping condition the feature selection procedure could 

run exhaustively or everlastingly all the way throughout 

raw data set. It may be discontinued whenever any 

attribute is inserted or deleted but ultimately not producing 

a better subset or whenever a subset is produced which 

provides the maximum benefits according to some 

assessing functions. A feature selector may stop 

manipulating features when the merit of a current feature 

subset stops improving or conversely does not degrade.  
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Based on some evaluation functions and calculations 

feature selection methods find out the best feature from 

different candidate subsets. Usually feature selection 

methods are classified into two general groups (i.e. filter 

and wrapper) [5]. Inductive algorithms are used by 

wrapper methods as the evaluation function whereas filter 

methods are independent of the inductive algorithm. 

Wrapper methods work along wrapping the feature 

selection in conjunction with the induction algorithm to be 

used and to accomplish it wrapper methods use cross-

validation. 

Parameter tuning or optimization plays a fundamental 

role in machine learning techniques [6]. To achieve good 

quality generalization, it is essential to select an 

adequately good model parameter set for the particular 

learning problem. The selection of model parameters can 

radically influence the excellence of the solution. Poor 

selection of parameters can effect in failure of the method 

[7]. The parameter optimization is a procedure of tuning 

the learning parameters (e.g. number of neurons in the 

hidden layer for neural networks, or the kernel selection 

for support vector machine), of the machine learning 

techniques to deal with specific type of problems. In spite 

of the reasonable default parameter settings of the 

machine learning algorithms, it is not guaranteed that 

those will be optimal for any specific problem [8]. The 

most important idea of parameter tuning is to select a 

subset of significant parameters to build robust learning 

models. From the theoretical viewpoint, it can be shown 

that optimal parameter selection demands a meticulous 

search of all potential subsets of parameters. This is 

unrealistic whenever a great number of parameters are on 

hand. Therefore in the field of machine learning the 

challenge is to find out an acceptable set of parameters 

rather than an optimal parameter set [6]. Eventually the 

satisfactory parameter set is considered as an optimal set. 

The methods or procedure to optimize a system largely 

varies and depends on the purpose of that system involved 

but the aim of all optimization matches to a common 

interest; to achieve the optimal outcome. Parameters are 

either set by common, non-task-specific rules (e.g. hand-

tuning) or they are automatically tuned by predictive 

modeling software [9]. However, some published research 

work for solar power prediction deals with either feature 

selection or algorithm parameter optimization in very 

limited scope; the effectiveness of using both of them at 

the same time is not so far methodically investigated. 

Widely used wrapper selection methods are briefly 

discussed in the following section. Methods of parameter 

optimization (e.g. hand-tuned and auto parameter 

optimization by predictive modelling program) are briefly 

illustrated in section 3. Section 4 deals with real life data 

collection and analysis of the data set. Section 5 handles 

the first phase of the experiments that is selecting potential 

feature subsets by wrapper selection methods and 

applying them on machine learning techniques with 

default parameter settings. The results obtained from this 

phase are compared with the prediction results of machine 

learning techniques without applying feature selection 

(WAFS) methods to observe the improvement. Section 6 

and 7 conducts the second phase of the experiments that is 

optimizing machine learning parameters and the 

prediction accuracy of those machine learning techniques 

are re-evaluated through adopting both the optimized 

parameter settings and selected feature subsets. The 

evaluation between the results of two phases evidently 

shows that the later phase (i.e. machine learning 

techniques with selected feature subsets and optimized 

parameters) provides considerable improvement in the 

accuracy for solar power prediction than the earlier phase 

(i.e. machine learning techniques with selected feature 

subsets and default parameters). Concluding remarks are 

provided in final section of this paper.  

2. Wrapper Methods of Feature Selection 

The wrapper methods use the performance (e.g. 

regression, classification or prediction accuracy) of an 

induction algorithm for feature subset evaluation. The 

concept of wrapper approach is presented in the Figure 1 

[10]. Wrapper methods evaluate the goodness of each 

selected feature subset by applying that induction 

algorithm to the original dataset using the selected features 

in the subset. Usually wrapper methods are able to 

generate potential feature subsets with high accuracy 

because of the well matching of those subsets with the 

learning algorithms. 

 

Figure 1. The wrapper approach for feature selection 

The easiest method among all the wrapper selection 

algorithms is the forward selection (FS). This method start 

the procedure without having any feature in the feature 

subset and follows greedy approach so that it can 

sequentially add features until no possible single feature 

addition results in a higher valuation of the induction 

function. Backward elimination (BE) begins with the 

complete feature set and gradually removes features as 

long as the valuation does not degrade. Description about 

Forward Selection (FS) and Backward Selection (BS) can 

be found in [11] where the authors proved that wrapper 

selection methods are better than those methods having no 

selection. 

Starting with an empty set of features the Best First 

Search (BFS) produces every possible individual feature 

extension [12]. BFS exploits the greedy hillclimbing 

approach in conjunction with backtracking to search the 

space of feature subsets. BFS has all the flexibility to start 

with an empty subset and search in forward direction. 

Alternatively it can start having full set of attributes and 

search in backward direction or it can start randomly from 

any point and move towards any direction. Extension of 
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the BFS is the Linear Forward Selection (LFS). A limited 

number of attributes k are taken into consideration by LFS. 

This method either select the top k attributes by initial 

ordering or carry put a ranking [13,14]. 

Subset Size Forward Selection (SSFS) is the extension 

of LFS. SSFS carries out an internal cross-validation. A 

LFS is executed on every fold to find out the best possible 

subset-size [14,15]. Through the individual evaluations 

attributes are ranked by the Ranker search. It uses in 

combination with attribute evaluators [15]. 

GA performs a search using the simple genetic 

algorithm described in Goldberg [16]. Genetic algorithms 

are random search techniques based on the principles of 

natural selection [16]. They utilize a population of 

competing solutions evolved to an optimal solution. 

Nonetheless, GAs naturally involves a huge quantity of 

evaluations to get to a least. Other than all these 

conventional methods an unconventional approach has 

been experimentally verified. In this method we calculated 

the correlation coefficient for each (except the target 

attribute) of the competing attribute with respect to the 

target attribute of the used dataset. For this purpose, the 

Pearson‟s correlation coefficient formula is used which is 

described in the next section. After the attribute wise 

calculation, those attributes were selected as feature subset 

whose correlation coefficient values are positive only. The 

attributes having negative correlation coefficient are 

ignored for this case. This method was named ‘Positive 

Correlation Coefficient Selection (PCCS)’.  

3. Hand Tuned and Automatic Parameter 

Optimization 

Hand-tuning is possibly the most commonly used 

process for machine learning technique to attain a 

parameter set that generates good learning behaviour. It is 

all about to manually change one or a few learning 

parameters at a time, guided by trial-and-error and the 

professional prior knowledge of that machine learning 

technique, until the model's behaviour is acceptably close 

to the expected or target behaviour - or until the expert 

loses patience. 

The vision of machine learning is building the 

automatic specifications from data without involving 

monotonous and time consuming human participation. 

From the knowledge of repetitive experiments in the field 

of machine learning illustrate that machine learning 

techniques require appropriate learning parameter 

selection for their adaptation to the particular training data 

sets [17]. Ample of research in machine learning has given 

attention on the development of automatic parameter 

tuning algorithms (i.e. predictive modelling) for which 

many algorithms and datasets having hundreds or 

thousands of variables [6]. Predictive modelling is the 

process by which a model is created or chosen to get the 

most accurate prediction of an outcome. Many approaches 

or techniques have been developed using predictive 

modelling program to handle the automatic parameter 

optimization issue and applying those in particular 

situations [18]. In the subsequent sections, automatic MLP 

and SVM machine learning tuning process is performed 

by DTREG (pronounced as D-T-Reg) which is a very 

recent and advanced predictive modelling software 

regarding this issue [19]. For LMS, only manual 

optimization/tuning are done varying the random seed G; 

sample size S is not varied or tuned because of the 

possibility of data inconsistency. Auto optimization or 

tuning is generally not practiced for LMS. 

4. Real Life Data Collection and Analysis 

To perform the experiments, data is collected from the 

Australian Bureau of Meteorology (BOM), the National 

Aeronautics and Space Administration (NASA), the 

National Oceanic and Atmospheric Administration 

(NOAA). Free data is available from National Renewable 

Energy Laboratory (NREL) and NASA. These are 

excellent for multi-year averages but perform poorly for 

hourly and daily basis solar radiation prediction. After 

analyzing the collected raw data from different sources, 

the data provided by the Australian largest and most 

diverse scientific institutions the „Commonwealth 

Scientific and Industrial Research Organization (CSIRO)‟ 

were selected for the experiments to develop solar 

radiation prediction method. The hourly raw data have 

been collected for a period of 2005 to 2010. The attributes 

in the dataset are: average air temperature, average wind 

speed, current wind direction, average relative humidity, 

total rainfall, wind speed, wind direction, maximum peak 

wind gust, current evaporation, average absolute 

barometer, and average solar radiation. The number of 

features used for this research is the highest in comparison 

to other prediction approaches for solar power prediction 

found in the literature review. To estimate model accuracy 

precisely, the wide-ranging practice is to perform some 

sort of cross-validation method as well as training and 

testing method for error estimation. For this paper both the 

10 folds cross-validation method and training (70%) and 

testing (30%) method are examined with the used data set. 

Table 1 represents the statistical properties of the CSIRO 

raw data. 

Table 1. Statistical description of the raw data set 

 
Min. Max. Mean Std. Dev 

Avg. Air Temp. (DegC) -5.8 40.1 20.47 6.99 

Avg. Wind Speed (Km/h) 0 27.1 6.99 4.78 

Current Wind Dir. (Deg) 0 359 158.91 103.66 

Avg. Relative Humidity (%) 0 100 55.11 24.26 

Total Rainfall (mm) 0 30.4 0.07 0.69 

Wind Speed (Km/h) 0 24.83 5.77 4.38 

Wind Direction (Deg) 0 360 169.91 109.84 

Max. Peak Wind Gust (Km/h) 0 106 20.45 11.33 

Current Evaporation (mm) -1.36 1.36 0.31 0.28 

Avg. Abs. Barometer (hPa) 921 1020 966.59 12.09 

Solar Radiation (W/m2) 1 1660 300.75 325.17 

5. Applying Feature Selection Techniques 

on the Data Set 

All the research works related to solar radiation 

prediction select the input features or attributes randomly. 

Unlike the conventional way this paper experimented with 

the maximum number of features and found out the best 

possible combination of features for the individual 

learning models of the hybrid model. To perform the 

experiments for selecting significant feature sub sets for 
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individual machine learning technique the traditional BFS, 

LFS, SSFS, ranker search, GS and very own the PCCS 

selection methods are used. To carry out experiments 

three algorithms for machine learning technique namely: 

Least Median Square [20], Multilayer Perceptrons [21] 

and Support Vector Machine [22] are used. 

To evaluate the degree of fit that is how well a 

regression model fits to a data set is usually obtained by 

correlation coefficient. Assuming the actual values as a1, 

a2 … an and the predicted values as p1, p2 … pn, the 

correlation coefficiency is known by the following 

Equation: 
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To find out the correlation coefficient of the model, the 

full training set is partitioned into ten mutually exclusive 

and same-sized subsets. The performance of the subset 

depends on the accuracy of predicting test values. For 

every individual algorithm this cross validation method 

was run over ten times and finally the average value for 

10-cross validations was calculated. In k cv , a data set 

nS  is uniformly partitioned into k folds of similar size 

1{ ,..., }.kP P P For the sake of clarity and without loss of 

generality; it is supposed that n  is multiple of k . Let 

/i n iT S P be the complement data set of iP . Then, the 

algorithm A(.) induces a classifier from iT , ψ
i

( )iA T  and 

estimates its prediction error with iP . The 

k cv prediction error estimator of ( )nA S   is defined 

as follows [23]: 
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where 1( , ) 1i j  iff i j and zero otherwise. So, the 

k cv error estimator is the average of the errors made by 

the classifiers ψi in their respective divisions Pi
. 

According to Hyndman in [23], the mean absolute error 

(MAE) and mean absolute percent error (MAPE) are used 

to measure the prediction performance; these evaluation 

metrics are also exercised for the experiments of this 

paper. The definitions are expressed as: 
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Error of the experimental results was also analyzed 

according to mean absolute scaled error (MASE) [24]. 

MASE is scale free, less sensitive to outlier; its 

interpretation is very easy in comparison to other methods 

and less variable to small samples. MASE is suitable for 

uncertain demand series as it never produces infinite or 

undefined results. It indicates that the prediction with the 

smallest MASE would be counted the most accurate 

among all other alternatives [24]. Equation 5 states the 

formula to calculate MASE. 
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5.1. Prediction of the Machine Learning 

Techniques using the Selected Feature 

Subsets 

Various feature sub sets were generated or selected 

using different wrapper feature selection methods. 

Afterwards six hours ahead solar radiation prediction by 

the selected machine learning techniques namely LMS, 

MLP and SVM were performed. For this instance the 

selected feature sub sets were supplied to the individual 

machine learning techniques. The intention of this 

experiment was to observe whether this initiative produces 

any improvement in the error reduction of those selected 

machine learning techniques or not. For these experiments 

the tuning any of the particular algorithms to a definite 

data set was avoided. For all the experiments default 

values of learning parameters were used. In general, in the 

following tables, one can see the CC, MAE, MAPE and 

MASE of six hours in advance prediction for each machine 

learning technique supplied with different feature subsets. 

For all the experiments “W” is used to indicate that a 

particular machine learning technique supplied with the 

selected feature subsets statistically outplays the one 

without applying feature selection (WAFS) methods. 

Table 2 and Table 3 represent the obtained CC and MAE 

for applying LMS, MLP and SVM machine learning 

technique for six hours in advance prediction on the used 

data set before and after feature selection process. 

In Table 4 and Table 5, the MAPE and MASE are 

shown before and after feature selection processes are 

applied to LMS, MLP and SVM machine learning 

technique for the same purpose. 

The results from the experimental results show that the 

PCCS is somewhat superior feature selection method for 

LMS algorithm considering all the instances. It is 

noticeable that all the feature selection methods 

contributed to improve the CC of LMS algorithm. 

However, in the case of MAE all the selection algorithms 

except the GS improve the results for LMS. In both the 

case of MAPE and MASE, BFS is the only selection 

method which does not improve the results for LMS. It is 

found from those results that the Ranker Search is to some 

extent superior feature selection method for MLP 

algorithm. It is noticeable that all the feature selection 

methods present nearly close CC for MLP algorithm but 

in the case of MAE, MAPE and MASE Ranker search is 

the only selection method which improves the results. 

Finally the obtained results illustrate that again the Ranker 
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Search is to some extent superior feature selection method 

for SVM. It is also noticeable that all the feature selection 

methods present either nearly close or equal CC for SVM. 

However, in the case of MAE, MAPE and MASE, LFS is 

the only one which is unable to improve the results for 

SVM. 

Table 2. Achieved CC after applying various wrapper selection methods on LMS, MLP and SVM 

 
WAFS BFS LFS SSFS Ranker 

 
GS PCCS 

 
LMS 0.95 0.96 0.96 0.96 0.96 

 
0.96 0.97 W 

MLP 0.98 0.97 0.97 0.98 0.99 W 0.97 0.98 
 

SVM 0.96 0.96 0.96 0.96 0.97 W 0.96 0.96 
 

Table 3. Achieved MAE after applying various wrapper selection methods on LMS, MLP and SVM 

 
WAFS BFS LFS SSFS Ranker 

 
GS PCCS 

 
LMS 77.19 76.81 74.49 74.12 74.93 

 
87.53 63.37 W 

MLP 91.02 168.34 222.73 119.11 74.31 W 288.83 110.57 
 

SVM 126.88 123.46 129.51 123.42 102.12 W 125.59 124.52 
 

Table 4. Achieved MAPE after applying various wrapper selection methods on LMS, MLP and SVM 

 
WAFS BFS LFS SSFS Ranker 

 
GS PCCS 

 
LMS 17.65 19.53 17.08 17.04 16.93 

 
17.49 16.82 W 

MLP 20.17 50.53 41.83 23.46 17.87 W 32.83 21.5 
 

SVM 21.72 21.53 22.35 21.35 20.88 W 21.35 21.65 
 

Table 5. Achieved MASE after applying various wrapper selection methods on LMS, MLP and SVM 

 
WAFS BFS LFS SSFS Ranker 

 
GS PCCS 

 
LMS 0.63 0.71 0.61 0.6 0.61 

 
0.62 0.49 W 

MLP 0.74 2.35 1.81 0.97 0.58 W 1.37 0.9 
 

SVM 1.03 1.02 1.05 1 0.88 W 1 1.01 
 

5.2. Prediction Results: Before versus After 

Applying the Feature Selection Techniques 

In Table 6 the prediction errors (MAE and MASE) of the 

individual machine learning techniques are compared on 

the basis of without supplying selected feature subsets and 

after supplying selected feature subsets on them. The 

comparative results show that errors are reduced for all the 

instances after supplying selected feature subsets. The 

terms MAE_BEFORE and MASE_BEFORE represent the 

results for without having any selected feature subsets for 

MAE and MASE respectively where as the terms 

MAE_AFTER and MASE_AFTER represent the results 

having selected feature subsets for MAE and MASE 

respectively. 

Table 6. Error measurements of the top most three decisive 

regression algorithms’ prediction accuracy with feature selection 

 
MAE_BEFORE MAE_AFTER MASE_BEFORE MASE_AFTER RANK 

LMS 77.19 63.37 0.63 0.49 1 

MLP 91.02 74.31 0.74 0.58 2 

SVM 126.88 102.11 1.03 0.88 3 

The subsequent sections handle the second phase of the 

experiments that is optimizing machine learning 

parameters and the prediction accuracy of those machine 

learning techniques are re-evaluated through adopting 

both the optimized parameter settings and selected feature 

subsets. The results obtained from the two phases of 

experiments are also compared in the subsequent sections 

to observe the gradual improvement of the accuracy of the 

machine learning techniques for solar power prediction.  

6. Optimizing Different Parameters of the 

Selected Machine Learning Techniques 

As discussed earlier, in this section the most important 

and influential learning parameters of MLP and SVM will 

be automatically tuned or optimized using DTREG and the 

only changeable parameter of LMS will be hand tuned. To 

the best of knowledge this is the first time that DTREG is 

used for systematic parameter tuning for MLP and SVM. 

6.1. Parameter Optimization of MLP 

Parameter structuring or parameterisation is one the 

classical problems for MLP machine learning technique. 

The key limitation of the multilayer perceptron regression 

model is its degrees of freedom in parameterisation. This 

means selecting or finding right quantity of levels, 

quantity of neurons within every level, learning rate, 

momentum constant, initial weights, activation function 

and bias value. Solution may not converge unless 

parameters are suitably selected. The MLP network is 

trained to search for a set of weights. These weights will 

be helpful to have outputs from MLP which will be very 

close to the actual output. A number of issues need to be 

considered for designing and training [25] MLP networks 

which are described below in correspondence with this 

paper and experiments: 

Selection of the number of hidden layers required. 

Decision of the number of neurons to be used in each 

hidden layer. 

Searching for a globally optimal solution that bypasses 

local minima. 

Convergence towards an optimal solution in a sensible 

period of time. 

6.1.1 Selection of the Number of Hidden Layers 

In general, one hidden layer is enough to handle almost 

all sorts of problems. The utilization of two hidden layers 

hardly contributes any improvement to model and this 

may create the possibility of converging into „local 

minima‟. Theoretically no motivations are observed in 

support of using more than two hidden layers [25]. 
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Nonetheless, DTREG provides the option to create a 

model with more than one hidden layers. In this section 

the experiments are carried on to design and train an MLP 

network with three layers including one hidden layer. 

Table 7 displays a summary of the options and parameters 

those were selected on the property page of DTREG for 

the MLP model. 

Table 7. Summary of the options and parameters selected for the 

MLP model 

Type of model Multilayer Perceptron Network (MLP) 

Number of layers 3 (1 hidden) 

Hidden layer 1 neurons Search from 2 to 30 

Hidden layer activation function Logistic 

Output layer activation function Linear 

Type of analysis Regression 

Validation method Cross validation 

Number of cross-validation folds 10 

6.1.2. Decision of the Number of Neurons to be used in 
Each Hidden Layer 

One of the most important aspects of MLP architecture 

is the number of neurons in the hidden layer. Applying the 

inadequate number of neurons in the hidden layer will 

produce incompetent and poor fitting model. On the other 

hand utilizing a large number of neurons may significantly 

increase the training time as well as over fitting model. 

The above mention dilemma that is discovering the 

moderate or optimum numbers of neurons for the hidden 

layer is tackled by DTREG with the inclusion of an 

automated characteristic. Table 8 demonstrates the model 

size summary report generated using DTREG. It shows 

that the MLP network architecture is optimal having 11 

neurons for the hidden layer 1. MLP network size 

evaluation was performed using 4-fold cross-validation. 

Table 8. Model Size Summary Report 

Hidden layer 1 neurons % Residual variance 

2 6.04074 

3 5.46065 

4 5.17803 

5 4.92497 

6 5.03781 

7 4.79645 

8 5.02134 

9 4.72315 

10 4.80855 

11 4.60414  Optimal size 

12 5.10664 

13 4.73179 

14 4.69155 

15 4.72458 

16 5.12888 

17 5.09756 

18 4.63393 

19 4.93682 

Figure 2 graphically illustrates the error rate versus 

number of hidden neurons. It shows that neuron number 

nine in hidden layer exhibits the lowest error for MLP. 

 

Figure 2. Model size and error rate 

6.1.3. Finding a Globally Optimal Solution 

The MLP architecture should be restructured in such a 

way that the algorithm is more likely to acquire the global 

solution. Even though there has been considerable 

research on this issue [26,27], there is no commonly 

established heuristic for this issue and different 

researchers have preference on different methodologies. A 

classic MLP architecture contains hundreds of initial 

weight values. These initial weights need to be readjusted 

in a way which will lead to an optimal solution. 

Traditional methods (e.g. steepest descent) for 

optimization of an MLP network are highly vulnerable to 

fall into the trap of „local minimum’. Actually those 

techniques are unable to observe big picture to attain 

‘global minimum’. For the case of DTREG, the initial set 

of random weights is chosen by Nguyen-Widrow [29] 

algorithm. After that the optimization of those initial 

random weight values are performed by DTREG using the 

conjugate gradient algorithm which typically discovers 

the optimal weight values very promptly. However, the 

problem lays here with the fact conjugate gradient does 

not provide any guarantee of reaching to the global 

minimum [25]. To handle this condition it is really 

practical to bring into play DTREG with multiple attempts 

to achieve the optimization. In those manifold attempts 

each and every effort should have different set of random 

weights to start with. For the experiments of this paper the 

number of convergences attempts is allowed up to 4 times 

in DTERG. 

6.1.4. Convergence to the Optimal Solution 

Applying gradient descent algorithm on MLP actually 

slows down the convergence procedure and the worse is 

not to converge at all. Getting success on complex and 

large scale problems the MLP network heavily relies on 

the user specifications of learning rate and momentum 

term parameter. Automated procedure is not available to 

choose those parameters and wrong selection of those are 

responsible for extremely slow, or not any convergence at 

all. However, the conjugate gradient algorithm [25] 

which is used by DTREG to adjust the initial random 

weight values has been effectively applied in numerous 

occasions of machine learning problems and is judged one 

of the most efficient techniques so far conceived. The 

working procedure of the conjugate gradient algorithm 

usually follows a straighter pathway in comparison to the 
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gradient descent to search the optimal set of weights. 

Typically, the conjugate gradient performs considerably 

more robust and faster way than the gradient descent 

algorithm. One of the most important characteristics of the 

conjugate gradient algorithms is its non dependence from 

the user specifications of learning rate and momentum 

term parameters. In addition to the conjugate gradient, 

DTREG incorporates a latest algorithm named scaled 

conjugate gradient which was developed by MF Moller in 

1993 [29]. The later algorithm exploits the numerical 

approximation and circumvents the unsteadiness through 

the integration of the power of conjugate gradient 

algorithm with the model trust region technique from 

Leavenberg-Marquardt algorithm. This combination 

permits the scaled conjugate gradient to gain reduced 

computational expense (i.e. it avoids the computationally 

expensive line search exercised by the conventional 

conjugate gradient algorithm) for calculating the optimal 

step-size towards the search direction. The experiments 

carried on by Moller showed that the converging speed of 

the scaled conjugate algorithm is faster twice and 20 times 

than the typical conjugate gradient and gradient descent 

algorithm respectively. Those experiments also illustrated 

that the frequency of failure to converge by the conjugate 

gradient is far less than the typical conjugate gradient and 

gradient descent algorithm. 

6.2. Parameter Optimization of SVM 

The kernel conveys earlier knowledge about the fact 

being modeled, determined as a similarity measure among 

two vectors in input space. The mapping of input features 

to a broader or hyperspace is done by kernel function [30] 

and research work is still continuing to reveal the way of 

selecting best possible kernel for a specific situation [31]. 

Even though Support Vector Machines require only very 

few user specified input parameters, the accuracy of an 

SVM model is largely dependent on the optimal selection 

of those input parameters and their combination (i.e. the 

kernel parameters such as C, Gamma and P).  

Two very well known and established methods, pattern 

search and grid search are built-in DTREG to search the 

optimized learning parameters [25]. The grid search 

[32,33] works along all the values with in a prescribed 

search range of parameters. The pattern search which is 

also known as ‘compass search’ or ‘line search’ begins 

the searching process from the middle of the specified 

search area and continues test steps in all possible 

directions for each and every parameter value. Usually the 

pattern search involves far less assessments than the grid 

search of the model. However, the underlying limitation 

of a pattern search is the possibility of falling into local 

minimum rather than global minimum for the network 

parameters. Table 9 displays a summary of the options and 

parameters those were available on the property page for 

the SVM model. 

For experiments, Epsilon-SVR with Polynomial and 

RBF kernel and Nu-SVR with Polynomial and RBF kernel 

combinations were performed with both the Grid and 

Pattern search to achieve optimal parameter values. 

Finally the Epsilon-SVR with Polynomial kernel 

combination was successful to provide a set of optimized 

parameters for SVM. Table 10 shows the optimized 

parameters obtained from the experiments. 

Table 9. Summary of the options and parameters available for the 

SVM model 

Type of model Support Vector Machine (SVM) 

Type of model 
Epsilon-SVR, Nu-SVR, C-SVC, 

nu-SVC 

SVM kernel function 
Polynomial, RBF, Linear, 
Sigmoid 

Type of analysis Regression, Classification 

Validation method Cross validation 

Number of cross-validation folds 10 

Search method Grid and Pattern 

Search criterion Minimize total error 

Table 10. Summary of the optimized parameters for the SVM model 

Optimized parameter values for SVM 

SVM model Epsilon-SVR 

Kernel function Polynomial 

Polynomial degree 3 

Epsilon (P) 0.001 

Cost (C) 2707.27408 

Gamma (G) 0.001 

Coef0 35.9381366 

6.3. Parameter Optimization of LMS 

LMS regression which is based on least squared 

functions is produced as of arbitrary sub-samples within 

raw data. For the training data, fixing the seed to select 

arbitrary sub-samples and setting the volume of the 

arbitrary examples utilized to produce the least squared 

functions are the major problems of LMS regression 

algorithm. As mentioned earlier, for LMS, only manual 

optimization/tuning are done varying the random seed G; 

sample size S is not varied or tuned because of the 

possibility of data inconsistency. Auto optimization or 

tuning is generally not practiced for LMS. Experiments 

were carried on with the default value of S = 4 and 

varying the value of G from 0 to 9. The combination S = 4, 

G = 6 was found to be the potential one to improve in the 

prediction accuracy of LMS which is demonstrated in the 

next section. 

7. Prediction of the MLP, SVM and LMS 

with Selected Feature Subsets and 

Optimized Parameters 

As discussed earlier, the empirical results achieved 

from the previous chapter demonstrate that LMS, MLP 

and SVM supplied with selected feature subsets provided 

better prediction accuracy than without having selected 

feature subsets. It is mentionable that for those 

experiments the LMS, MLP and SVM were applied with 

their respective default learning parameter settings. At this 

stage the optimized learning parameters for LMS, MLP 

and SVM are achieved either by hand-tuning or 

automatically by predictive modelling program. In this 

section the six hours in advance solar power prediction is 

again performed with the intention to achieve better 

prediction accuracy of the LMS, MLP and SVM by 

adopting both the optimized or tuned learning parameter 

settings and selected feature subsets on them. It is be the 

second level of improvement after attaining significant 

progress with the feature selection procedure. This 

particular step will help to increase the possibility of 

getting optimized result from the final layer of hybrid 
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prediction. In Tables 11 - 13 the prediction errors (MAE, 

MAPE and MASE) of the LMS, MLP and SVM 

respectively are demonstrated on the basis of having „auto 

optimized parameters + selected feature subsets‟ 

combination and „default parameters + selected feature 

subsets‟ combination on them. The comparative results 

show that errors are significantly reduced for all the 

instances for the combined effect of auto optimized 

parameters and selected feature subsets.  

Table 11. Achieved prediction error in terms of MAE, MAPE and MASE with and without having optimized parameters for MLP 

Multilayer Perceptron Regression (MLP) 

MAE MAPE MASE 

Auto Optimized 
Parameters + Selected 

Feature Subsets 

Default Parameters 
+ Selected Feature 

Subsets 

Auto Optimized 
Parameters + Selected 

Feature Subsets 

Default Parameters 
+ Selected Feature 

Subsets 

Auto Optimized 
Parameters + Selected 

Feature Subsets 

Default Parameters 
+ Selected Feature 

Subsets 

15.42 74.31 3.84 14.87 0.26 0.58 

Table 12. Achieved prediction error in terms of MAE, MAPE and MASE with and without having optimized parameters for SVM 

Support Vector Machine (SVM) 

MAE MAPE MASE 

Auto Optimized 

Parameters + Selected 

Feature Subsets 

Default 

Parameters+ 
Selected Feature 

Subsets 

Auto Optimized 

Parameters + Selected 

Feature Subsets 

Default 

Parameters+ 
Selected Feature 

Subsets 

Auto Optimized 

Parameters + Selected 

Feature Subsets 

Default Parameters+ 

Selected Feature 

Subsets 

19.81 102.12 4.35 17.88 0.34 0.88 

Table 13. Achieved prediction error in terms of MAE, MAPE and MASE with and without having optimized parameters for LMS 

Least Median Square (LMS) 

MAE MAPE MASE 

Hand-tuned Optimized 
Parameters + Selected 

Feature Subsets 

Default Parameters+ 
Selected Feature 

Subsets 

Hand-tuned Optimized 
Parameters + Selected 

Feature Subsets 

Default 

Parameters+ 

Selected Feature 
Subsets 

Hand-tuned Optimized 
Parameters + Selected 

Feature Subsets 

Default Parameters+ 
Selected Feature 

Subsets 

13.37 63.37 3.49 13.82 0.19 0.49 

7.1. Synopsis of All the Experiments 

This section summarizes all the results obtained so far. 

The individual prediction performances of the LMS, MLP 

and SVM are presented in terms of MAE and MASE. As 

discussed in earlier sections MAE is considered as the 

standard error measurement or validation technique in this 

paper. In Table 14 the MAE of LMS, MLP and SVM are 

presented in three phases. In the first phase the results are 

shown with only the default learning parameters settings 

of those machine learning techniques. The second phase 

shows the results of each machine learning technique with 

optimized feature subsets and default learning parameter 

settings. This can be termed as „Optimization Level - 1‟. 

The third phase corresponds to the results having the 

optimized feature subsets in combination with the hand-

tuned/auto optimized parameter settings of the LMS, MLP 

and SVM. Again this can be termed as „Optimization 

Level - 2‟. Table 15 demonstrates the results with all the 

above mentioned phases but those results are justified in 

terms of MASE instead of MAE. Figures 3 and 4 display 

the graphical illustration of the empirical results obtained 

from Table 14 - 15 respectively. 

Table 14. Summary of the prediction performances in terms of MAE 

MAE 

 
Default 

Parameters 

Default 

Parameters + 
Selected Feature 

Subsets 

Hand-tuned/Auto 

Optimized Parameters 
+ Selected Feature 

Subsets 

LMS 77.19 63.37 13.37 (hand-tuned) 

MLP 91.02 74.31 15.42 (auto) 

SVM 126.88 102.12 19.81 (auto) 
 

Table 15. Summary of the prediction performances in terms of 

MASE 

MASE 

 

Default 

Parameters 

Default Parameters + 

Selected Feature 
Subsets 

Hand-tuned/Auto 

Optimized Parameters + 
Selected Feature Subsets 

LMS 0.63 0.49 0.19 (hand-tuned) 

MLP 0.74 0.58 0.26 (auto) 

SVM 1.03 0.88 0.34 (auto) 

 

Figure 3. Graphical illustration of the summarized prediction, 

performances in terms of MAE 
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Figure 4. Graphical illustration of the summarized prediction, 

performances in terms of MASE 

8. Conclusions 

Feature selection is a fundamental issue in both the 

regression and classification problem specially for the data 

set having very high volume of data. Applying feature 

selection methods on machine learning techniques may 

significantly contribute to increase performance in terms 

of accuracy. In this paper various methods of feature 

selection methods have been briefly described. In 

particular the wrappers are found better selection method 

which is also justified by the results obtained from the 

experiments performed in this paper. The results from the 

experiments demonstrate that LMS, MLP and SVM 

supplied with selected feature subsets provide better 

prediction accuracy (i.e. reduced MAE and MASE) than 

without having selected feature subsets. It is mentionable 

that for these experiments the machine learning techniques 

were applied with the default learning parameter settings. 

Therefore the later part of this paper continued with the 

extended experiments with the intention to achieve better 

prediction accuracy of the selected machine learning 

techniques by adopting both the optimized or tuned 

learning parameter settings and selected feature subsets on 

them. The new results obtained from the later stage were 

compared with the earlier prediction results of the same 

machine learning techniques those used the selected 

feature subsets only but not the optimized learning 

parameters. Empirical results suggest that the applying 

optimized parameters with the selected feature subsets 

yield excellent generalization performance of LMS, MLP 

and SVM in terms of MAE and MASE. In general it can be 

concluded that providing more attention and effort 

towards the potential feature subsets selection and 

machine learning parameter optimization (e.g. combined 

effect of selected feature subsets and optimized 

parameters on prediction accuracy which is investigated in 

this paper) can significantly contribute to the improvement 

of the accuracy for solar power prediction. 
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