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Abstract  Multi-lump and distributed parameter models are used to analyze the frequency behavior of a 

pressurized water reactor (PWR). The distributed parameter model is built upon the partial differential equations 

describing heat transfer and fluid flow in the reactor core. For comparison, a lumped parameter reactor core model 

with multiple fuel and coolant lumps is employed. The features of the transfer functions for both models are 

evaluated. The distributed parameter model has the ability to offer an accurate transfer function at any location 

throughout the reactor core. In contrast, the multi-lump parameter model only provides an average value in a given 

region (lump). Comparisons show that the multi-lump model results are only most favorable for frequencies less 

than ~0.1 Hz. 
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1. Introduction 

This investigation compares and contrasts distributed 

and lumped parameter models for pressurized water 

reactor (PWR) cores. The distributed and multi-lump 

representations are built upon partial and ordinary 

differential equations, respectively. These models are 

utilized in this study to analyze the frequency domain 

behavior of a nuclear power reactor. 

Previous researchers have developed methods based on 

different multi-lump parameter models to evaluate the 

behavior of the nuclear reactor core; for example, see [1], 

[2]. However, the multi-lump approach is based on 

average theory; it is difficult to arrive at an accurate result 

at any exact point under study. To improve model 

resolution, the number of lumps could be increased to a 

large number. But this makes an analytical solution 

difficult and a numerical solution may require excessive 

computer time. The limitations of the lumped parameter 

technique is an impetus to construct a distributed-

parameter model so that wherever the location of interest, 

the actual state variable values at that position can be 

calculated. With the distributed-parameter representation, 

the transfer function between any input and output at any 

location throughout the reactor core can be derived, 

plotted and analyzed.  

Early distributed parameter models were developed by 

Gyftopoulos and Smets, who performed a one-

dimensional slab geometry analysis in which the fuel, 

moderator and coolant were three separate slabs [3]. Some 

researchers were motivated to pursue such representations 

due to work with boiling water reactors, whose modeling 

requires consideration of a moving boundary between 

single and two phase coolant flow. For instance, 

Ciechanowicz developed such models [4,5,6]. 

Although the distributed parameter model is more 

accurate than the multi-lump approach, the precision of a 

distributed parameter model is not always necessary, and 

in such situations, lumped parameter models may suffice. 

This need was a motivation for this research to determine 

when one model is more appropriate than the other. 

While distributed parameter models for reactor cores 

are not new, the computational tools available to 

researchers and practioners have advanced dramatically. 

Original distributed parameter models (circa 1960) were 

carried out using analog computers. Besides, the reactor 

power levels have grown significantly since that work was 

performed. Furthermore, reactor monitoring and 

diagnostic methods using noise analysis often employ 

frequency domain models of phenomena. For an extensive 

treatise on the subject of power reactor noise analysis, see 

[7]. 

Reactor core modeling using both multi-lump and 

distributed parameter representations is first presented in 

Section 2 of this paper. Afterward, detailed comparisons 

of the transfer functions obtained from the two models are 

made using data from a large commercial nuclear power 

station. The differences between the models are evaluated 

and explained. These comparisons provide a deeper 

understanding of the behavior of the reactor core as well 

as revealing the advantages and disadvantages of the two 

models. Finally, Section 4 summarizes the research 

accomplishments and recommendations for future work 

are outlined. 
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2. Reactor Core Modeling 

In order to study the characteristics and response of the 

reactor, researchers have built different models of the 

nuclear reactor core. In early work, they divided the core 

into a single fuel lump and a single coolant (moderator) 

lump, but improved accuracy was obtained by using two 

coolant lumps for each fuel lump. However, researchers 

realized that this model cannot provide an accurate result 

because the parameters vary throughout the core. So, the 

model was expanded to include multiple lumps, typically 

aligned according to axial position. As a further 

improvement, the distributed parameter model was 

developed so that wherever the point is of interest, the 

actual value at that position can be calculated. This section 

presents the physical basis for both models. 

2.1. Reactor Neutronics 

For both models, the reactor thermal power is described 

by the point kinetics equations. The reactor neutronics are 

depicted by the linearized version of the generation time 

(Λ) formulation of the point kinetics equations 
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where δP and δC are the changes in reactor thermal power 

and delayed neutron precursor concentration, respectively; 

P0 is the steady-state reactor thermal power; β and are λ 

the delayed neutron fraction and decay constant, 

respectively; αk represent the reactivity feedback 

coefficients for fuel (k = F) and moderator (k = M) 

temperature, δTk; and δρext is an external reactivity input. 

When the power level is so low as to make reactivity 

feedback effects negligible, the point kinetics equations 

lead to the well-known zero power reactor transfer 

function of 
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2.2. Multi-lump Model 

 In the multi-lump model, the reactor core may be 

divided in the radial and/or axial directions. Other obvious 

divisions include the fuel-to-coolant heat transfer in terms 

of the cladding, gap and the fuel pellet itself. However, 

because of the relative size difference between these three 

components, it is the fuel rod length that is generally 

divided into several sections. Figure 1 shows a block 

diagram of a typical multi-lump reactor core with N fuel 

lumps and 2N coolant lumps. 

One of the problems brought by the modeling of the 

heat transfer process is the value of the driving 

temperature difference (ΔT) between fuel and coolant. The 

model employed here uses two coolant lumps for each 

fuel lump with the ΔT for both coolant lumps taken as the 

temperature difference between the fuel and the average 

temperature of the first coolant lump. Here, an assumption 

is made that each coolant lump is well-stirred so that the 

outlet coolant temperature equals the average coolant 

temperature in the lump. 

The ordinary differential equations for the fuel 

temperature, TF, are derived from a basic energy balance 

on the fuel lump from the fission-produced heat gain less 

the heat transferred to the coolant: 
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where TF,i is the average temperature of the ith fuel lump; 

mF is the entire fuel mass in the core; cpF is the fuel 

specific heat; fi is the fraction of heat generated in the ith 

fuel lump; τF is the fuel-to-coolant heat transfer time 

constant; P is the reactor thermal power; and Θi is the 

average temperature of the ith coolant lump. 

In similar fashion, differential equations for the coolant 

lumps are derived from basic energy balances. For the odd 

(j = 2i-1) coolant lumps: 
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For the even (j = 2i) coolant lumps: 
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where mC is the coolant mass in the core; cpC is the coolant 

specific heat; τC is the coolant-to-fuel heat transfer time 

constant; and τR is the coolant residence time in the core. 

Reactor Power; 

Neutron 

Precursors Fuel 

Temperature 

Lump #2

Fuel 

Temperature 

Lump #5

Fuel 

Temperature 

Lump #1

Coolant 

Temperature #9

Coolant 

Temperature #10

Coolant 

Temperature #4

Coolant 

Temperature #3

Coolant 

Temperature #2

Coolant 

Temperature #1

M

F
*

Reactivity

0

D









0

ext

 

Figure 1. Five fuel and ten coolant lumps reactor core model; *only one 

out of ten coolant and one out of five fuel feedback paths are shown 

The frequency response can be ascertained using a 

matrix formulation. The transfer function can be written as: 
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where x are the state variables; f = by is the forcing 

functions vector; and A is the state matrix. For example, 

the state matrix structure of an isolated core using one fuel 

and two coolant nodes is 
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where Θ0 is the core inlet coolant temperature. 

Most of the results presented in this study are from a 

five fuel and ten coolant lumps representation. The block 

diagram of this model is shown in Figure 1. 

2.3. Distributed Parameter Model  

The distributed parameter model employs partial 

differential equations to provide a continuous 

representation of the spatial dependence of the state 

variables. In this section, the fuel temperature is first 

derived, followed by the coolant temperature. 

Subsequently, the transfer functions in the PWR core are 

developed. The model is diagrammed in Figure 2. 
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Figure 2. Distributed-parameter model of a PWR 

We assume that the heat transfer through the fuel is 

one-dimensional in the radial direction with uniform heat 

generation throughout the reactor core. The partial 

differential equation describing the heat production and 

heat conduction through the fuel rod is [1]: 
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where QF is the heat generation rate per unit volume in the 

fuel rod; k is the thermal conductivity of the fuel rod; ρF is 

the fuel density; and cpF is the fuel specific heat. The fuel 

temperature solution is obtained by Laplace transforming 

and applying the appropriate boundary conditions 

including Newton’s law of cooling at the fuel rod surface: 
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where kscpFF 2 ; h is the surface heat transfer 

coefficient; and r0 is the radius of the cylindrical fuel rod. 

The heat generated is transferred to a flowing coolant. 

The partial differential equation describing the convection 

between the fuel element and a single-phase, 

incompressible coolant with one-dimensional slug flow is 
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where Θ(z,t) is the coolant temperature; u is the coolant 

velocity; z is the distance from the core coolant inlet (axial 

height); p is the heated perimeter of the coolant channel; 

AC is the cross-sectional flow area of the channel; ρC is the 

coolant density; cpC is the coolant specific heat; and QC is 

the volumetric heat generation rate in the coolant. The 

solution of this relation yields 
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where  
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From these results, multiple transfer functions can be 

extracted. Those of primary interest are explicitly 

annotated in the overall block diagram of the PWR 

distributed parameter model in Figure 3, in particular 
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Researchers, such as Gyftopoulos and Smets, used only 

the feedback from the midplane distributed parameter 

result to depict core feedback. We, however, have derived 

analytical expressions that accurately incorporate 

temperature feedback from across the entire core. Using 

the block diagram, the overall transfer functions 

quantifying the change in power to changes in both the 

reactivity and coolant inlet temperature are, respectively: 

 

  


H

MF
ext dzCfBAfAf

H

G

GP
sF

0

0

0

)1(1

)(





 (19) 

 

 








H

MF

H

M

dzCfBAfAf
H

G

dzD
H

G

P
sH

0

0

0

0

0 )1(1

)(







 (20) 



 American Journal of Energy Research 20 

where 
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Figure 3. Overall block diagram of the PWR distributed parameter 

model 

3. Simulation and Comparison 

In this section, detailed comparisons of the transfer 

functions obtained from the two models are made using 

data from a large commercial nuclear power station. The 

differences between the models are analyzed and 

explained to illuminate the advantages and disadvantages 

of the two models. The comparisons made early in this 

section will be those for which the distributed and multi-

lump models are in good agreement. Subsequently, those 

results that differ significantly are presented to reveal 

situations that favor one model over the other. 

3.1. Power Plant Characteristics 

A 3800 MWt PWR is selected for simulation. Table 1 

presents those parameters necessary to generate the 

transfer functions shown hereafter. Uniform heat 

generation is assumed throughout the reactor core. 

3.2. Zero Power Reactor Transfer Function 

The zero power transfer function G0, plotted in Figure 4, 

is a fundamental transfer function that directly impacts the 

frequency response of other state variables. The graph 

shows that the frequency response has a zero at 

approximately 0.0152 Hz and two poles at 0 Hz and 

around 37.6 Hz, where the former and latter frequencies 

correspond to λ and λ+β/Λ. 

Table 1. PWR Operating Parameters 

Parameter Value 

Delayed neutron fraction, β 0.0073 

Delayed neutron precursor decay constant, λ 0.1 /sec 

Neutron generation time, Λ 0.00003 sec 

Fuel temperature reactivity feedback 

coefficient, αF 
–1.18×10–5 /°F 

Moderator temperature reactivity feedback 
coefficient, αM 

–7.0×10–5 /°F 

Fission heat deposition directly in fuel, f 0.975 

Fuel heat capacity, (mcp)F 20,250 Btu/°F 

Coolant heat capacity, (mcp)C 46,765 Btu/°F 

Fuel-to-coolant heat transfer time constant, τF 3.265 sec 

Coolant-to-fuel heat transfer time constant, τC 7.538 sec 

Coolant residence time in the core, τR 0.7622 sec 

Fuel rod radius, r0 0.191 inch 

Coolant velocity, u 16.4 ft/sec 

α2/s from Equation (9) 9.76×104 sec/ft2 

b from Equation (12) 2.661 /sec 

k/h from Equation (12) 2.095×10–4 /ft 
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Figure 4. Zero-power reactor transfer function 

3.3. Power to Reactivity Transfer Function 

The overall power to reactivity transfer function 

(δP/δρext) is graphed in Figure 5. Comparing these curves 

with that of the zero power transfer function (Figure 4) 

clearly shows the impact of the fuel and moderator 

temperature feedback mechanisms. The low frequency 

gain is reduced to a finite value, while the pole at 37.6 Hz 

is still present. Notice that the multi-lump model curve is 

very similar to the distributed parameter model results. 

We find that the low frequency gain of the distributed 

parameter model is 41990 MW/ρ, which is close to the 

multi-lump model value of 40910 MW/ρ. As a gauge of 

the multi-lump model accuracy, Figure 6 plots the low 

frequency gain as a function of the number of fuel lumps. 

As would be expected, greater numbers of lumps begin to 

better approximate the distributed parameter model, in 

particular, at about 50 lumps, the multi-lump model 

reaches the asymptotic value. 
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Figure 5. Power to reactivity transfer function 
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Figure 6. Low frequency δP/δρext gain from both models 

3.4. Fuel Temperature to Power Transfer 

Function 

The fuel temperature to power transfer function (δTF/δP) 

is plotted in Figure 7. The average fuel temperature is 

obtained at 20rr  using the classic fuel temperature 

profile of )4()( 2
max krqTrTF  . The fuel 

temperature response from the distributed parameter 

model does not vary significantly with axial position since 

the heat source in this model is assumed uniform along the 

fuel rod. Without this assumption, the fuel temperature 

would differ with height. Furthermore, the multi-lump 

model results are in agreement. The low frequency gain of 

the distributed parameter model and the multi-lump model 

are 0.160 °F/MW and 0.164 °F/MW, respectively. The 

cutoff frequencies for both are 0.0404 Hz, which 

corresponds to the fuel heat transfer time constant (τF) 

given in Table 1. 
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Figure 7. Fuel temperature to power transfer function 

3.5. Fuel Temperature to Reactivity Transfer 

Function 

The fuel temperature frequency response when a 

change in reactivity is the driving input can be derived 

from Figure 3: 

 
 ))1((1 0
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CfBAfAfG
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F
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
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
 (25) 

Figure 8 shows the transfer function in which the low 

frequency gain is 6550 °F/ρ for the distributed parameter 

model when z = 6.25 ft (core midplane) and 6411 °F/ρ for 

the third fuel lump in the multi-lump model. There is 

greater difference between these two results because the 

multi-lump model includes feedback from across the 

reactor core, whereas the distributed parameter result is 

based purely on feedback at the core midplane. This 

example is indicative of the need to include complete core 

feedback in the distributed parameter representation. Even 

so, both curves match reasonably well. Both curves 

encounter the first pole at 0.551 Hz, which corresponds to 

the fuel-to-coolant heat transfer time constant (τF). Then, 

they both have a break frequency at 37.64 Hz which is 

caused by the zero power transfer function. After that, it 

decays from one decade per decade to two decades per 

decade. 
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Figure 8. Fuel temperature to reactivity transfer function 

3.6. Coolant Flow Delay 

A block diagram of the coolant flow in the multi-lump 

model is shown as Figure 9, where G2N is the transfer 

function for each coolant lump. According to the approach 

taken here, the fuel has been divided into N lumps that 

each has two corresponding coolant lumps where Θi is the 

coolant temperature at the exit of the ith coolant node. The 

transfer function G2N is formulated as: 

 
R

R
N

Ns

N
G





/2

/2
2


  (26) 

Therefore, the total effect of the multi-lump model is to 

raise G2N to the power of 2N. By plotting Equation (26) 

when N equals 1, 5, and 10, and raising it to the power of 

2N, the overall effect at the last coolant node (i.e., core 

exit) can be seen by comparing those curves to that for the 

distributed parameter model, shown as Figure 10. From 

the plot, it can be seen that with increasing numbers of 
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lumps, the corner frequency is raised and the asymptotic 

slope after the break frequency becomes steeper. Hence, 

the deviation from the distributed parameter model is also 

increasing with model order. This is very important since 

logical thought deems that by increasing the number of 

lumps, the multi-lump model will become more accurate. 

However, Figure 10 clearly shows that more lumps 

actually makes this particular result further from the 

distributed parameter model and leads to very significant 

error in the estimated frequency response. Hence, a 

drawback of the multi-lump model is revealed and this 

effect will propagate to the transfer functions examined in 

subsequent subsections. 

G2N G2N G2N

Θ0 Θ1 Θ2 Θ2NΘ2N–1

 

Figure 9. Block diagram of the coolant flow in the multi-lump model 

10
-4

10
-2

10
0

10
2

10
4

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Frequency (Hz)

G
a

in

Overall Effect (G
2N

)
2N

 

 

Distributed

N=1

N=5

N=10

 

Figure 10. Overall transfer function for coolant flow delay through the 

core 

3.7. Coolant Temperature to Heat Production 

Transfer Function 

The overall coolant temperature to heat production 

transfer function, including heat transfer feedback 

interactions with the fuel temperature, can be determined 

as well. For the distributed parameter model, 

 CfBAfQC )1(    (27) 

as shown in Figure 3. Figure 11 plots δΘ/δQC when z = 

6.25 ft for the distributed parameter model and the 

corresponding fifth coolant lump of the multi-lump model 

as a comparison. The low frequency gains for both are a 

perfect match at 0.007724 °F/MW. 

The effect of the coolant flow delay discussed in 

Section 3.6 can be observed somewhat in Figure 11 as 

well. According to Figure 10, the asymptotic slope and 

break frequency of the multi-lump model differ from those 

of the distributed parameter model; this effect is slightly 

exhibited in Figure 11 in the 0.1 to 1 Hz range. In addition, 

the multi-lump curve breaks upward at ~ 1 Hz. Therefore, 

it is more accurate to use the distributed parameter model 

in analyzing this transfer function at higher frequency. 
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Figure 11. Coolant temperature to heat production transfer function 

3.8. Coolant Temperature to Reactivity 

Transfer Function 

The transfer function between coolant temperature and 

reactivity can be derived from Figure 3 as well: 
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Figure 12 shows that the low frequency gains are 

3243 °F/ρ at the core midplane in the distributed model 

and 3163 °F/ρ for the fifth coolant lump in the multi-lump 

model. These two models match well at low frequency, 

but again another case of isolated versus entire core 

feedback implementation like that in Section 3.5. 

However, at high frequency, the coolant delay effect 

shown in Figure 10 is observed in this graph and the 

multi-lump curve breaks downward at a lower frequency 

(~ 1 Hz) compared with the distributed model. Therefore, 

it is more accurate to use the distributed parameter model 

in analyzing this transfer function above 0.1 Hz. 

The high frequency oscillatory behavior is due to the 

complex exponential term from the coolant flow pure time 

delay. The frequency of the initial peak is tied to the flow 

delay time to that axial position, i.e., τz = z/u, which means 

the oscillation begins at lower frequency, the closer the 

position is to the core exit. In this case, because of these 

effects, it may be more accurate to use the distributed 

parameter model, depending on the frequency interval of 

interest. 
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Figure 12. Coolant temperature to reactivity transfer function 
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3.9. Coolant Temperature to Fuel 

Temperature Transfer Function 

Next, the coolant temperature to fuel temperature 

transfer function can be derived from Figure 3: 
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 (29) 

Figure 13 shows the transfer function of coolant 

temperature to fuel temperature of both models at the core 

exit. The low frequency gain of the distributed model is 

0.0945 °F/°F while it is 0.0949 °F/°F for the multi-lump 

model. After a turning point at around 1.23 Hz, the gain of 

the multi-lump model drops to 0.01 °F/°F after the break 

frequency, while the gain of the distributed model 

oscillates about 0.01 °F/°F at high frequency. As 

explained in Section 3.8, the oscillatory behavior at high 

frequency for the distributed parameter model is also 

observed in this graph. 
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Figure 13. Coolant temperature to fuel temperature transfer function 

3.10. Power to Coolant Inlet Temperature 

Transfer Function 

Figure 14 plots the multi-lump model results and 

Equation (20) for the distributed parameter model. The 

low frequency gains of the two models are 29.4 MW/°F 

for the distributed model and 33.5 MW/°F for the multi-

lump model. They both display the break frequency which 

is caused by the zero power transfer function at 37.63 Hz. 

At low frequency, these two models match reasonably 

well. However, the oscillatory behavior of the distributed 

parameter model presented in Section 3.8 can be seen in 

this transfer function too. Therefore, it may be more 

appropriate to use the distributed parameter model in 

analyzing this transfer function above 0.1 Hz. It is 

noteworthy that if the number of lumps is increased 

significantly, to say 100, that the oscillatory behavior 

starts to manifest itself in the multi-lump response as well. 

4. Summary 

From the comparisons between the multi-lump and the 

distributed parameter models, the advantages and 

disadvantages of each are revealed. Based on the methods 

by which the two models are established, the distributed 

parameter model is built upon PDEs and it has the ability 

to offer the transfer function at any location throughout 

the reactor core. However, the multi-lump parameter 

model is based on an average depiction. Hence, it can only 

obtain the value at a certain region (lump) instead of any 

specific position.  
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Figure 14. Power to coolant inlet temperature transfer function 

The results presented in this paper have shown that at 

low frequency (< 0.1 Hz), the multi-lump representation 

does a remarkable job of approximating the distributed 

parameter model. It is the portrayal of the pure time delay 

of coolant flow by first-order lags in the multi-lump model 

that leads to the most significant differences in the results 

obtained from the two approaches. In fact, the results (see 

Figure 10) reveal a finding that is perhaps counter-

intuitive, specifically, that larger numbers of lumps can 

lead to results that increasingly diverge from the 

distributed parameter case. The simulation results 

demonstrate that a five fuel-ten coolant lump model 

provides an accurate depiction of the reactor core behavior. 

A contribution here is the inclusion of the fuel and 

moderator temperature reactivity feedback from the entire 

core, in the form of analytical formulae. Incorporating 

whole core feedback becomes even more important when 

non-uniform heat generation is taken into account. 

With the availability of closed-form expressions for the 

distributed parameter model, their application to reactor 

parameter identification and analysis are a natural 

extension to this work. For example, in terms of a noise 

analysis technique, in [8], it was necessary to derive the 

valid regions for ascertaining the moderator temperature 

reactivity coefficient sign (±) using a multi-lump approach; 

revisiting that analysis might lead to methodology 

improvements. 
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