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Abstract  Energy System Modeling tools are becoming ever-prevalent in global society to help decide factors in 
energy policymaking, power production methods, and means of environmental impact assessment. Energy system 
engineers need to be aware of the use of energy system models due to the complexity of the systems and the demand 
for model use in evaluating an energy system. This literature review will cover the importance of energy system 
models and the most recent advances in modeling technology, the accepted methods of model evaluation and 
validation before the use of an energy system model, and lastly, demonstrate a comparative analysis validation 
technique with three case studies using a multi-model approach, by applying two widely accepted global energy 
models. The two global energy models evaluated are the Integrated MARKAL-EFOM System (TIMES) and 
Energy-Rapid Overview and Decision-Support (EN-ROADS) models. The comparative analysis will be 
demonstrated by reviewing three base cases, whether 2.5°C average warming is achievable within the desired 
timeline, the projected global energy supply, and practical climate change mitigation scenarios. The comparative 
analysis results show that two globally accepted energy system models still predict different outcomes with the same 
inputs. The comparative analysis results exemplify the necessity for energy system engineers or other model users to 
properly benchmark and validate any model they decide to use for decision-making before accepting model results. 
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1. Introduction 

The Earth's surface temperature in 2021 will be the 
sixth warmest since records began in 1880. Another 
analysis of global temperatures [1] reported that 2021 and 
2018 were the sixth hottest years on record, with global 
land and sea temperatures in 2021 recorded at 1.87°F 
(1.04°C). Global temperature rise has been correlated with 
the concentration of greenhouse gases in the atmosphere. 
Carbon dioxide and other greenhouse gases (GHG) act 
like blankets, trapping some of the heat the Earth would 
have radiated into space. Greenhouse gases absorb energy 
at wavelengths from 2,000 to 15,000 nanometers. This 
range overlaps with infrared energy; when CO2 absorbs 
this infrared energy, it vibrates and reflects the wave in all 
directions. About half of this energy wave goes to space, 
and about half returns to Earth as heat, contributing to the 
greenhouse effect [2]. 

Many scientific studies have confirmed the correlation 
between GHG emissions and the rise in global 
temperatures [3]. As shown in Figure 1, since the 
beginning of the industrial revolution, human activity has 
increased CO2 in the atmosphere; and the global 

temperature has increased with increasing concentration of 
CO2 or greenhouse gas produced with the extraction and 
combustion of fossil fuels [2]. 

The ice at the Earth's poles is getting smaller and 
smaller as it melts. Much of this melting ice contributes to 
sea level rise; sea levels are expected to rise by more than 
10 to 32 inches (26 to 82 cm) by the end of this century, 
which will cause severe flooding in coastal areas. We 
continue to witness extreme weather conditions; for 
example, [4], there was a winter storm in Texas, where 
temperatures dropped to -13°C in February 2021, 
disrupting the power supply to about 3.5 million homes 
and businesses. In June of the same year, temperatures 
reached 34.8°C in Moscow, breaking that month's all-time 
heat record. In October, monsoon floods in a day  
killed about 150 people and left thousands of families 
homeless in India [5]. These extreme weather events and 
temperature fluctuations have caused enormous losses to 
humankind. Rising temperatures have changed the living 
conditions of wildlife in the affected areas. As a result of 
these changes, many species migrate, and some become 
extinct. These weather events have also increased public 
and governmental attention to climate change action, 
seeking economic, political, and legal solutions, especially 
in policy making. 
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Figure 1. Historical carbon dioxide emissions and global temperature [1] 

Governments and non-governmental organizations rely 
on robust mathematical and computer models when 
formulating climate protection measures and legal 
instruments. Energy models use mathematical concepts to 
describe the relationship between the sun, the environment, 
and human activity. Such models integrate knowledge 
from the natural sciences, computer science, engineering 
sciences such as electrical engineering, and non-physical 
sciences such as economics and sociology. Mathematical 
models can take many forms, such as dynamic and 
statistical models. Some models are deterministic; some 
are stochastic, some treat time as a discrete quantity, and 
some treat it as a continuous variable [6]. Some energy 
models combine the variables simultaneously, making 
them complex to understand and apply. 

Global energy and climate models, also called integrated 
assessment models (IAM), are based on well-documented 
physical processes and simulate the transport of energy 
and materials through the climate system. Climate models, 
or general circulation models or GCMs, use mathematical 
formulas to characterize how energy and matter interact in 
different parts of the ocean, atmosphere, and land [7]. The 
construction and operation of climate models involve 
identifying and quantifying Earth system processes, 
expressing them mathematically, setting variables to 
represent initial conditions and subsequent changes in 
climate forces, and translating the equations into powerful 
supercomputers models. It is a complex process of 
iteratively solving variables like temperature [8]. A 
simplified global energy and climate model structure is 
shown in Figure 2 [9], showing variables inputs and 
outputs, prices, primary energy supply, energy services 
and materials demand, transformation, and trade data. 

Most authors have to classify models into two 
predominant groups. First, some models focus in detail on 
mitigation options and climate change impacts without 
assessing all possible effects or summarizing them into a 
single metric regarding projected climate damage. Second 
is a high-level model that calculates carbon emission 
trajectories and prices to maximize global welfare [10]. 

A systematic review of commonly cited energy systems 
models both in academic literature and policy papers in 
the UK since 2008, identified 22 different models and 

showed that the MARKAL model, which later became 
TIMES, is commonly applied for most academic research 
and policy formulation in the UK energy market [11]. The 
MARKAL was developed in a cooperative multinational 
project by the Energy Technology Systems Analysis 
Programme (ETSAP) of the International Energy Agency 
[12]. MARKAL was created to ease the design of energy 
systems that comply with the United Nations' framework 
on climate change. This work presented a list of all 
referenced models and categorized them according to 
technological, mathematical description, and sectoral 
coverage. Hall and Buckley recommended the 
introduction of a classification schema for use within 
academia and policy, which would provide a decision-
support tool for energy systems modeling. 

Recently, a similar work [13] to the UK’s modeling 
tools was carried out for publicly available tools 
developed by the Department of Energy (DOE). As 
reported, the study framed the functions and capabilities 
of the models. It created a methodology that stakeholders 
could use to determine which DOE modeling tool best 
suits their specific evaluation of energy storage systems 
(ESSs). The report focused on DOE price-taker valuation 
tools, including QuEST, REoptTM, DER-CAM, System 
Advisor Model (SAM), and Energy Storage Evaluation 
Tool (ESETTM). To familiarize potential users of these 
programs with the types of datasets needed to run these 
models, the author provided three example use cases. 
They illustrated how DOE tools could be used for storage 
valuations for three use-case families, which include 
facilitating an evolving grid; critical services; and facility 
flexibility, efficiency, and value enhancement. A 
hierarchical system was also developed to help select 
modeling tools. Some criteria considered in the selection 
system include the type of ESS (Energy Storage Systems) 
technology, another mix of DER resources that needed 
integration, stakeholders and use cases, kind of analysis, 
and other features and capabilities. They produced a 
model selection platform, which gives an overall score 
based on the criteria listed previously. Though the inputs 
of this model selection platform are subjective, the system 
clarifies the model selection process, which helps navigate 
the extensive list of energy systems models. 
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Figure 2. Structure of the internal working of a global energy and climate model [9] 

In our assessment, energy modeling that contributes to 
system operation and engineering design is well-studied, 
but modeling that supports energy policy and development 
is less well-studied. Energy models that support policymaking 
are called integrated models and are the subject of  
our focus. The integrated model combines simplified  
sub-models of the global economy, agriculture and land 
use, climate, and energy systems. Some of these models 
include, examples include Global Change Analysis Model 
(GCAM), the Model for Energy Supply Strategy 
Alternatives and their General Environmental Impact 
(MESSAGE), the Model for Analysis of Energy Demand 
(MAED), the Prospective Outlook on Long-term Energy 
Systems (POLES), Integrated National Energy Modeling 
System (iNEMS), MARKAL/TIMES, and EN-ROADS. 

Global energy models support decision-making in 
energy policy and development; therefore, they are always 
complex and far-reaching. These models are essential 
because they are used to make decisions that affect many 
people and have long-term consequences. We decided to 
evaluate the performance of some of these models using a 
pragmatic approach of comparing some of the popular 
models. This study attempts to validate two global energy 
models by applying them to similar datasets and case 
scenarios. We chose The Integrated MARKAL-EFOM System 
(TIMES) and EN-ROADS models for a few reasons: 

a)  These two energy models are popular all over the 
world. 

b)  Open source 
c)  Free and low-cost installation 
d)  Good dashboard 
e)  Publicly available well-documented user’s manual 

guide  
Applications of global energy models such as TIMES 

and ENROAD include identifying the most cost-effective 
energy systems, identifying the most cost-effective responses 
to emission limits, and performing predictive analysis of 
long-term energy budgets under various scenarios. Notably, 
applications also include evaluating new technologies and 
priorities. Assess the impact of R&D, regulation, taxes, 
and subsidies, estimate greenhouse gas emissions inventories, 
and assess the value of regional cooperation [9]. 

A recent application of TIMES is the development of 
methods of forecasting technology developments that 
consider the long-term nature of technological developments, 

technological developments in the oil and gas and coal 
industries, as well as production and distribution of 
electricity, and the preference for hydrogen energy 
technology in Russia [14]. 

To ensure their policy impact assessments were accurate, 
van de Ven et al. used multi-model analysis to analyze 
Glasgow's climate action policy and the likelihood of gaps. 
They used four different models: TIMES, Global Change 
Analysis Model (GCAM), GEMINI-E3, and ModUlar 
Energy Systems Simulation Environment (MUSE). The 
short-term and long-term CO2 emission trajectories were 
assessed according to national policy and pledges.  The 
four integrated assessment models lead to different 
decarbonization pathways to achieve long-term goals.  In 
addition, all the models pointed out several feasibility 
issues related to the cost of mitigation, the rate and 
technology scale, and implementation measures.  This 
work [15] has highlighted why it is essential to properly 
calibrate models and decide on the type of action that is 
needed to validate the results. 

Some of the most influential ideas about the low-carbon 
transition come from energy models, which approach the 
interaction between energy technology and policymaking 
differently. In any model, paying attention to combining 
science and policymaking is essential. The results of [16] 
question the political neutrality of integrated energy 
assessment models embedded in the interface of science 
and policy. They suggest future directions for building 
these relationships to ensure policy decisions are not 
technically biased. Proper calibration and multi-model 
testing can reveal and evaluate some of these science 
policy relationships. 

Since most climate-related interventions have future 
impacts, it is essential to establish confidence in the 
solutions advocated and assess the certainty of delivering 
the required results. The European Union's ambitious 
Green Deal, which aims to be carbon neutral by 2050,  
is estimated using multi-model integrated assessment tools. 
The authors discussed the opportunities and challenges in 
creating and using an integrated assessment framework to 
inform the European Commission on the decarbonization 
roadmap [17]. With a multi-model approach, EU 
decarbonization pathways, modeling challenges, and 
consistency of results were evaluated by linking different 
models and modeling assumptions. 
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2. The Integrated MARKAL-EFOM 
System (TIMES) Model 
The Integrated MARKAL-EFOM System (TIMES) 

model is a bottom-up model generator that uses linear 
programming to create optimized lowest-cost energy 
systems subject to user constraints over medium and  
long-time ranges. The model engine combines two 
systematic approaches to modeling energy: engineering 
and economic approaches. The model includes all steps 
from primary resources to the process chain that converts, 
transports, distributes, and transforms energy into delivering 
energy services demanded by energy consumers. Once all 
inputs, constraints, and scenarios are created, the model 
attempts to solve and determine the energy system that 
meets the energy service requirements at the lowest cost 
over the time range [18]. It is recognized as a powerful 
tool for analyzing energy scenarios that can be used to 
assess the impact of potential policy actions [19]. 

The TIMES model is suitable for modeling at a high or 
national level; for example, [19] used the model in 
modeling the energy sector of Latvia. The primary data 
input of the model, in this case, study, includes different 
elements of the power and heat sectors, thus allowing 
several scenarios to be analyzed for further development 
of these sectors. Using the TIMES model, the work 
confirmed that the existing tax policy of Latvia is working 
correctly and ensures a more significant share of renewable 
energy in the total primary resource consumption in the 
energy sector. 

The TIME model is also suitable for systematically 
analyzing global energy issues such as Climate protection 
options, developing fully renewable energy systems, 
alternative fuels for passenger transport, and using electric 
vehicles [20]. These models are created to determine the 
optimal mix of technologies and resources that can 
minimize the total cost of the energy system under various 
user-defined constraints and opportunities. 

The TIMES model has also been used to assess the 
impact of introducing new technology on the existing 
multi-regional energy system. Using TIMES evaluated the 
effect of using bioenergy with carbon capture and storage 
(Selosse & Ricci, 2014). The study shows that bioenergy 
with carbon capture and storage has been identified as an 
attractive negative emission option for achieving 
meaningful CO2 emission reductions. 

3. EN-ROADS Model 
EN-ROADS Model is an open and fully documented 

online strategic energy-economy-climate simulation 
model. It represents the energy economy climate system at 
the global aggregate level, and it is based on the best 
available scientific evidence and tailored to match 
historical data and predictions from multiple sources. 
Users select assumptions, policies, and actions to mitigate 
greenhouse gas emissions through an intuitive interface 
and receive immediate feedback on potential energy, 
emissions, and climate trajectories [21]. Since its launch in 
December 2019, it has been used by more than 81,000 
people in 86 countries. It is very functional for facilitating 
interactive briefings or generating scenarios. Users of this 

model include over 1,000 executives and over 150 elected 
officials, including senators, governors, legislators, and 
their 200 congressional staff in the United States, dozens 
of nonprofit executives, and foundations worldwide. 

The EN-ROADS model has many uses. For example, 
HSBC, a global player in the financial sector, uses this 
tool to help employees learn about climate change, underpins 
HSBC's climate strategy, strengthens climate risk assessment, 
collaborates between businesses, and improves how the 
banks formulate climate policies. [22]. The 2022 Swedish 
general election [23] evaluated the political parties' climate 
proposals quantitatively. Emissions arising from proposed 
policies were quantified using the EN-ROADS model. Each 
party was then ranked by the number of megatons of carbon 
dioxide that would be saved compared to current levels. 
The model shows that the five-party proposals result in 
lower emissions than Sweden's planned status quo, with 
the Green Party (MP) proposing the most ambitious cuts. 

Romania [24] used the EN-ROADS model to assess  
the impact of wind energy on the country's energy mix 
and sustainable development initiative. Their work showed 
that investment in wind energy is vital but must be 
complemented with investment in other renewable energy 
sources for the country to achieve its sustainable 
development goals. 

4. Evaluating and Comparing Climate 
Models 

Models can help us understand climate change 
phenomena, and valuable models are constantly being 
adjusted and validated. Modelers consider climate models 
in a variety of ways. The most common technique has 
always been to compare model results to observed 
climatological measures. Another option is adjusting 
parameters (such as greenhouse gas concentrations or 
continental locations) to determine how well the model 
reproduces known past climate conditions and zones that 
differ significantly from the current climate. Parameters 
are adjusted to reflect temporary increases in greenhouse 
gases and significant volcanic eruptions [25]. 

After establishing the Intergovernmental Panel on Climate 
Change (IPCC) in 1988, modelers introduced a series of 
model validation exercises. The Lawrence Livermore 
National Laboratory initiated the atmospheric model 
intercomparison project (AMIP) in 1989. AMIP required 
each modeling group to run the model with a specific set 
of "constraints" or parameters to provide a particular set of 
output variables in a standard format. Modelers identified 
biases and diagnosed their reasons by comparing model 
results and observed data. This task was difficult for 
models with hundreds or thousands of parameters [25]. 

Because model validation is essential, the Climate 
Model Diagnostics and Comparisons (PCMDI) program 
was established by the US Department of Energy to 
provide a systematic and comprehensive assessment of 
climate models. The World Climate Research Program 
(WCRP) group, which includes climate science 
underpinning the United Nations Framework Convention 
on Climate Change, also launched the Coupled Model 
Intercomparison Project (CMIP). Since CMIP's inception, 
there has been a concerted effort to make model 
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comparison data available to scientists other than those 
running the models. They evaluate model performance 
over historical periods and quantify propagation sources in 
future forecasts. The main goal of CMIP is to publish 
multi-model output in a standardized format. 

5. Significance/Scientific Merits: Model 
Validation and Evaluation 

There is a need to validate any energy system model 
before use to see if the results correlate with history and if 
future results meet reasonable standards. According to 
[26], “Models are representations, useful for guiding 
further study but not susceptible to proof.” Any energy 
model realizes that a model is a tool that simplifies 
problems allowing greater confidence in decision-making. 
Validation of energy system models has been in question 
from the first use of models, even before they became 
widespread in the early 2000s. In 1979 [27] and again in 
1980, the National Bureau of Standards held symposiums 
to discuss the validation and assessment of energy models. 
The meetings were multi-day functions that covered 
everything from validation methods for any energy model 
to reviewing new models developed by scientists within 
the organization. The works [28] are essential to share due 
to their questions about model use for long-term 
predictions; they identified eight factors that must be 
addressed to develop large-scale modeling. The eight 
factors are as follows: social science models tend to have 
empirical factors that cannot be determined, making future 
predictions hard to validate; most statistical methods used 
for validation are based on past results assuming that the 
past and future will correspond; there is little agreement 
on what it means to predict the future, measurements of 
present work sometimes are not accurately making future 
results inaccurate, complex models are challenging to 
validate especially policy models, validation must be 
considered with the specific model, and what it is 
designed to do, models used to help decision making 
within policies should be validated differently than 
scientific models, and incorrect validation techniques can 
unfairly discredit models that have relevant results. When 
using any energy system model, these factors should be at 

the forefront of any engineer's mind. An energy system 
model would be incomplete without asking appropriate 
questions and not validating a model with adverse types of 
questioning. These sentiments of ensuring model validity 
have continued into the present, with researchers focusing 
on the need for certainty of the results from models and 
creating necessary adjustments for the future to be helpful 
for continued application (Pfenninger et al., 2014). 
Researchers from the Netherlands at the University of 
Groningen also echo the messages from 1970 to the 
present in their study of 19 used energy system models, 
stating the difficulties in modeling social behavior and 
other similar challenges [31].  

Following the works of validation presented by John D. 
Sterman, he offers a table of questions that modelers 
should ask but not while building models; these questions 
are shown in Table 1(a) and Table 1(b). They represent 
ideas that any energy engineer should understand before 
using results from a developed model. Any modeler needs 
to take the time to ask the questions raised in the tables to 
ensure that the model they are using suits their purpose; 
yes, it might take some time to answer all the questions. 
Still, it is imperative to know whether the model will 
provide an appropriate response for energy systems, 
especially when an energy system can cover over 100 
years, such as hydro or nuclear projects. 

While the validation techniques presented in John Sterman’s 
book Business Dynamics were created for building models 
using system dynamics, the methods used for model testing 
apply to any model, including the models developed for 
energy systems. As with any complex issue, some variables 
of modeling energy systems do not have mathematical 
equations attached to them. As environmental concerns 
and policy changes become more critical to an energy 
system, the question of how these concerns should affect 
the numerical results of models is presented. This paper is 
written not to provide answers to those questions. Still, by 
considering these questions as an energy engineer, better 
models can be created and used to influence energy system 
modeling. Once an engineer decides to use a model, multiple 
techniques can be used to test the energy system model. 
The types of tests in Table 2(a) and Table 2(b) here are not 
the only tests available to engineers, but it is an excellent 
places to start to ensure a suitable model. 

Table 1(a). Questions model users should ask but do not [32] 

Purpose, Suitability, and Boundary 
• What is the purpose of the model? 
• Have you identified the model boundary? Is the problem significant for coping endogenously? What essential variables and issues are exogenous or 
excluded? Are important variables excluded because there is no numerical data to quantify them?  
• What is the time horizon relevant to the problem? Does the model include the factors that may change significantly over time as endogenous 
elements? 
• Is the level of aggregation consistent with the purpose? 
Physical and Decision-Making Structure 
• Does the model conform to basic physical laws such as the conservation of matter? Are all equations dimensionally consistent without fudge factors? 
• Is the stock and flow structure explicit and consistent with the model purpose? 
• Does the model represent disequilibrium dynamics or assume the system is always in or near equilibrium? 
• Are appropriate time delays, constraints, and bottlenecks considered? 
• Are people assumed to act rationally and optimize their performance? Does the model account for cognitive limitations, organizational realities, 
noneconomic motives, and political factors? 
• Are simulated decisions based on information the real decision-makers have? Does the model account for data flow delays, distortions, and noise? 
Robustness and Sensitivity to Alternative Assumptions 
• Is the model robust in the face of extreme variations in input conditions or policies? 
• Are the policy recommendations sensitive to plausible variations in assumptions, including assumptions about parameters, aggregation, and model 
boundary? 
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Table 1(b). Questions model users should ask but do not [32] 

Pragmatics and Politics of Model Use 
• Is the model documented? Is the documentation publicly available? Can you run the model on your own computer? 
• What data types were used to develop and test the model (e.g., aggregate statistics collected by third parties, primary data sources, observation and 
field-based qualitative data, archival materials, and interviews)? 
• How do the modelers describe the process they use to test and build confidence in their model? Did critics and independent third parties review the 
model? 
• Are the results of the model reproducible? Are the results “add-factored” or otherwise fudged by the modeler? 
• How much does it cost to run the model? Does the budget permit adequate sensitivity testing? 
• How long does it take to revise and update the model? 
• Is the model being operated by its designers or by third parties? 
• What are the modelers' and clients' biases, ideologies, and political agendas? How might these biases affect the results, both deliberately and 
inadvertently?  

Table 2 (a). Energy system models validation tests 

Validation Test Description 

Boundary Assessment 

Identifying the boundary of a model can be qualitative or quantitative. Looking at the scope of what the model looks like 
allows engineers to determine if it will meet its needs. The qualitative boundary inspection could be whether the model 
considers decisions made by people, non-quantitative environmental concerns, or rules changing due to policy over time. 
The quantitative boundary inspection could ensure different variables in the model are not omitted or considered infinite, 
such as fuel resources or constant water supplies from the rain in a region. Researchers have seen that as a model's 
boundaries grow, the model will become more complex, and result accuracy becomes more dependent on historical data 
[33]. 

Unit Consistency 
For most energy models, there is heavy use in quantitative modeling. With the difficulties in working with significant 
algebraic expressions, ensuring that units of conversions are inspected is necessary so no fundamental error is created. This 
should be one of the first tests done on any model.  

Variable Analysis  

Variable analysis entails checking the individual parameters of models to ensure that they affect the model as they are 
expected to. For example, changing the fuel amount of a natural gas power plant to zero should make power output go to 
zero for the given period. Another example is adjusting the period of a project without changing other parameters; will the 
results be the same, or will the model produce different results? 

Shock Testing 
Shock testing involves adjusting parameters to normal outside operations of the model. Models should be able to react to 
abnormal parameters correctly. For example, negative input fuel amounts into a natural gas power plant model; will the 
model's results respond correctly to the odd inputs?  

Model Archaeology 

Due to some models taking decades to develop, researchers Paul E. Dodds, Ilkka Keppo, and Neil Strachan have proposed a 
novel method of inspecting energy system models. Reviewing changes in energy system model versions allows engineers to 
see the differences between the model and its output to evaluate whether the model produces reliable results. The research 
presented by (Dodds et al., 2015) uses this technique on the UK MARKAL model, highlighting the validation method and 
how this tool can be used for other energy models. 

Table 2(b). Energy system models validation tests 

Validation Test Description 

Reproduction 
Reproduction testing is a straightforward test. Can a different entity reproduce the same results following the methods used 
to produce the actual outcome? Robbie Morrison suggests that allowing others to see a model not only allows scientific 
testing validation of the model but builds public trust in the results within an energy model [35]. 

Assumption Checking 

Assumptions can be detrimental to the results of energy system models. Understanding what is assumed within a model is 
imperative for adequately analyzing results. If too many inputs are assumptions such as economic factors, model results 
could vary drastically from natural energy systems. Researchers at NREL studied assumptions made in their renewable 
energy integration reports and found by changing assumptions; results could vary by up to 20% in some of their models [36] 

Scenario Analysis 

Scenario analysis uses past data to test a model with known results. If models cannot recreate known effects, then 
adjustments must be made. Energy Strategy Reviews has recommended using a three-part framework when performing 
scenario analysis, starting with a qualitative outline, then quantitative metrics, and finally, evaluation criteria [37]. An MIT 
researcher Sergey Paltsev has indicated there are benefits to scenario analysis and models built using known data. Still, he 
does caution that models do not provide exact solutions to specific problems, only suggestions [38]. 

Comparative Analysis 

With the hundreds of available energy models, comparative analysis can be performed on most energy systems. 
Comparative analysis is when two energy system models are used with the same input data, and results are compared 
between the different models. This method allows for judgments to be used in deciding factors of energy systems. 
Comparison analysis can take a long time due to ensuring the correlation of input data to the models used. Researchers have 
reviewed Comparative analysis and shown that it leads to more robust and reliability of models [39].  

Empirical Validation  

Depending on the model boundary, it may be possible to validate a model using actual results from an energy system. Using 
live data from a constructed energy system, an energy model can have high accuracy percentages in future predictions. 
Smaller energy models, such as those for buildings or factories, continue improving based on empirical analysis [40]. For 
smaller energy models using empirical data, the National Renewable Energy Laboratory (NREL) has various levels of 
empirical validation based on errors [41]. As an energy system grows in complexity, it becomes less likely full empirical 
validation will be possible.  

 
Along with the validation techniques presented in  

Table 2(a) and Table 2(b), many engineers have proposed 
frameworks and rating systems for energy system models 
that can be used to analyze and critique an energy system 
model before use; those engineering tools can be viewed 
in their work (Khan et al., 2017; Niet et al., 2022). An 
energy engineer must test the models before using them 
for results. Using the techniques shown and questioning a 

model before use makes it possible to catch calculation 
mistakes that could hinder future energy projects. For 
example, using validation techniques, researchers found 
58 different energy system articles and models with errors 
within their findings [44]. Issues within energy models are 
to be expected, and it is a good thing that problems can be 
found. When issues are found within models, an 
opportunity is created; the model's creators can improve 
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the model to produce more accurate and reliable results. 
Without researchers searching for faults within energy 
models, impressive results from large projects would not 
be available. When using models, it is never good for 
engineers to have blind trust that the results are what 
would happen if a system were put in place that matched 
the energy model. 

6. ASHRAE and IPMVP Standards of 
Measurements 

With the growth of models within engineering, there 
have been standards set that engineers can use to validate 
energy system model’s inputs before use. The validation 
rules reviewed are the American Society of Heating, 
Refrigeration, and Air Conditioning Engineers (ASHRAE) 
Guideline 14-2014 and the International Performance 
Measurement and Verification Protocol (IPMVP). These 
two standards have been accepted by the Federal Energy 
Management Program of the US department of energy for 
their use in measurement and verification [45]. These 
guidelines are helping the energy industry record the 
pertinent data needed for modelers to have a reliable data 
source in energy system models, which allows the results 
and future predictions of models. Organizations such as 
ASHRAE have also recognized the importance of 
modeling within the global economy and offer 
professional development courses on how to build, 
evaluate and use energy models [46]. These courses help 
advance energy modeling by providing the most 
appropriate and acceptable methods to use energy models.  

ASHRAE states that the document aims to “provide 
guidelines for reliably measuring the energy, demand, and 
water savings achieved in conservation projects [47]”. 
ASHRAE guidelines fulfill this purpose with details 
providing the basis needed for any model of an energy 
system. By using the ASHRAE guidelines to inspect 
independent variables within an energy model, engineers 
can determine the validity of a model's results and 
determine if any critical factors of a model are missing. 
The guidelines offer specific approaches to energy models 
that follow the IPMVP outlines of whole building models, 
retrofit isolation, modeling, and simulations [47]. The 
guideline gives engineers a straightforward measurement 
information source to evaluate an energy system model. 
The IPMVP started in the early 1990s as a high-level 
review of best practices within the energy sector to 
measure performance levels. This document was created 
by National Renewable Energy Laboratories (NREL) 
researchers. The IPMVP is a similar document to the 
ASHRAE guidelines, even influencing the ASHRAE 
guideline on methods of measurement and validation on 
energy projects. The IPMVP focuses on measuring energy 
projects and efficiency on a larger scale than the 
ASHRAE guidelines. A handy tool for modelers in the 
IPMVP is the chapters on common issues with evaluation, 
verification, and measurement procedures [48]. The 
problems will allow modelers to examine energy system 
models for common mistakes to ensure validity before use. 
The IPMVP standard has become globally accepted as a 
trusted standard that companies will advertise that their  
 

energy system models comply with their usual [49]. The 
standards of measurements delivered by both ASHRAE 
and the IPMVP ensure energy system models use trusted 
measurement methods, allowing energy engineers to 
create or use models and their results accurately. While 
the standards of measures are not a validation test that can 
be used on all models, it is another indicator of 
trustworthy modeling when it can be used. 

7. Evaluation Methods of En-ROADS 
and TIMES 

A comparative analysis will be performed on two 
leading global energy system models to demonstrate 
validation tools and how to use them. Comparative 
analysis, as discussed in Table 2(a) and Table 2(b), is 
when multiple energy system models take the same input 
data to review differences in results and then find 
improved methods for the models. The EN-ROADS 
global climate simulation and the TIMES (The Integrated 
MARKAL-EFOM System) models were chosen to be 
analyzed. These two models were chosen based on their 
high use in energy system modeling analysis globally, 
with hundreds of papers using the models available for 
review. The amount of data on the two energy system 
models allows for a thorough examination and a fitting 
example of how energy engineers can approach using an 
energy model for their desired applications. While not 
every validation and verification technique is used on both 
models, and it is not recommended to perform every 
method possible on one energy model, this process of 
verification of models should be performed before 
engineers begin trusting any energy system model.  

EN-ROADS is a system dynamic-based model worked 
on since the 1990s as a partnership of many groups, 
including MIT, Ventana Systems, and Climate Interactive. 
System dynamic models have been shown to produce 
reliable unexpected behavior from human behaviors such 
as policy choices and other large-scale systems 
interactions (Eker et al., 2017; Bernardo & D’Alessandro, 
2019; McGookin et al., 2021). The transparency that the 
creators of EN-ROADS have with users has been a critical 
development point for the model. The data available to 
review from the developers can begin with a historical 
review or “archeological review,” as suggested in  
Table 2(a) and Table 2(b). The input data for EN-ROADS 
can be examined thoroughly on their website, listing 
sources for data and techniques used for the statistical fit 
of input data [21]. The historical data for EN-ROADS is 
updated regularly so that the newest information can help 
enhance the future projections of the model. Once a 
review of previous data and history is completed, the 
model can be reviewed with the extensive reference guide 
provided by EN-ROADS. The guide covers model 
structures, formulations, and measurements for all topics 
addressed within the model [21]. The guide is a needed 
resource for an engineer to review the model's boundaries 
and assumptions to ensure the model will fit the engineer's 
needs.  

The TIMES energy model is a newer, early 2000s 
model to the MARKAL energy model, which has  
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progressed since the late 1970s. The TIMES model has 
been globally accepted for its transparency in model 
structure and its public access. Government agencies of 
large nations have used the model to develop their models 
with additional data inputs specific to their region; these 
regions include the United States of America, Scotland of 
the United Kingdom, South Africa, and Brazil (EPA, 2022; 
Tomaschek, 2014, Tomaschek et al., 2016 & Dodds, 
2021). TIMES's massive adaptation makes it a 
considerable resource among energy modeling academics 
worldwide. The TIMES model follows EN-ROADS in 
providing documentation [18]. The TIMES model 
provides the energy system structure, formulations, and 
assumptions. The user guide for TIMES also goes through 
step-by-step processes on making a running simulation 
with available demo energy models.  

8. TIMES and En-ROADS  
Analysis 2.5-degree Celsius Case 

Evaluation of whether a two degrees Celsius warming 
is achievable under high uncertainty, analysis with the 
TIMES model. The approach of this study was to use the 
TIMES model to evaluate the effect of the climate 
sensitivity parameter and to look at hedging strategies to 
maintain a global temperature increase to 2.5 degrees C. 
The concept behind the hedging strategies is that actions 
are taken before 2040 that will hopefully help prevent 
temperature increases above the target without knowing 
the likely climate sensitivity parameter. The metric to 
evaluate the outcome is the cost of implementing the 
hedging strategy compared to the base case without a 
temperature target. A perfect forecast approach is used 
where it is assumed that the climate sensitivity parameter 
is known at the start of the simulation and that various 
actions are taken to achieve the temperature targets.  

For this comparison, we only focus on the results that 
the study identified as of particular interest and that fit 
within the range of capability of EN-ROADS. The 
following range of parameters of the presented cases will 
be used to replicate these results in EN-ROADS. 

8.1. Base Cases 
This analysis shows what changes to the energy system 

are needed to meet a 2.5 degrees C temperature target by 
2200, which implies that the base case will be above the 
target. In the base case scenarios where no climate target 
is imposed but differing assumptions around the climate 
sensitivity parameter are used, the TIMES approach 
determines a warming of between 2.7 and 3.6 degrees C 
by 2200. It provides a trajectory for achieving that 
temperature. 

8.2. Results 2.5-degree Celsius Case 
Using the business-as-usual scenario in EN-ROADS 

with matched climate sensitivity parameters, there is a 
significant difference between the temperatures at the start 
and the trajectories of the temperature increase until 2100. 
The available version of EN-ROADS stops its simulation 
at 2100, but the differences in both models by that point 
are straightforward and can be seen in Figure 3.  

An additional comparison of the different scenarios' 
atmosphere carbon dioxide equivalent concentration. 
Using the base case scenario again, this time with just one 
climate sensitivity was reported as 558 ppm by 2090. EN-
ROADS with a similar climate sensitivity will result in 
652 ppm by 2090. When plotted over time, as seen in 
Figure 4, there is a clear difference between the shapes of 
the curves. The EN-ROADS concentration has a distinct 
exponentially increasing concentration of CO2 compared 
with the linear increase seen in the TIME's concentration. 

 
Figure 3. Business-as-usual scenario results between EN-ROADS and TIMES 
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Figure 4. Atmosphere carbon dioxide equivalent concentration 

Table 3. Assumptions for the perfect forecast (PF) case parameters (5-degree C) 

Parameter 2015 2030 2050 2070 2090 Remarks 
GHG $/ton 2 4 12 43 86 CO2 eq 

CCS % 0 0 1.1 6.6 10.9 Contribution to total GHG reduction 

Afforestation % 65 43 29 26 20 Contribution to total GHG reduction 

Coal EJ/year 170 90 50 30 80  

Oil and gas EJ/year 180 340 560 390 290  

Nuclear EJ/year 100 110 200 730 1280  

Hydro EJ/year 100 150 300 390 440  

Biomass EJ/year 0 0 10 10 10  

Renewables EJ/year 0 0 10 10 20  

Total EJ/year 560 700 1140 1550 2140  

Table 4. Assumptions for the perfect forecast EN-ROADS parameters (5-degree C) 

Parameter 2015 2030 2050 2070 2090 Remarks 
GHG $/ton 0 2.75 10.6 42.8 80.1 CO2 eq 

CCS % 0% 55% 35% 35% 45% Contribution to total GHG reduction 
Afforestation % 0% 24% 53% 56% 46% Contribution to total GHG reduction 
Coal EJ/year 157 174 134 101 83.5  

Oil and gas EJ/year 305 354 373 364 350  
Nuclear EJ/year 11.2 14 68.5 178 228  

Hydro EJ/year 0 1.44 64.7 93.2 125  
Biomass EJ/year 56.8 62.4 60.7 59.9 60.5  

Renewables EJ/year 19.2 42 46.6 60.1 88.6  
Total EJ/year 548 647 747 856 936  

 
8.3. Results 2.5-degree Celsius Target Case 

Of the provided cases, the perfect forecast case is used 
for comparison with EN-ROADS. The chosen case is the 
5-degree C climate sensitivity to achieve 2.5 degrees C. 
The key inputs to the EN-ROADS model from the study 

are the greenhouse gas pricing, carbon sequestration ratios, 
and the energy supply mix moving towards 2100. Table 3 
depicts the range of assumptions that are desired to be met 
for the perfect forecast case and the EN-ROADS parameters 
developed. As shown in Table 4, the EN-ROADS case 
does not meet the targeted 2.5 degrees C by 2100. 
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8.4. Results of 2.5C Case 
The differences between the TIMES and EN-ROADS 

results for the base case and the perfect forecast case are 
significant. There are some limitations in comparison, as 
EN-ROADS cannot match all the scenarios. Still, 
comparing the conditions of the base case scenario shows 
why there would still be no alignment even with a 
matched set of parameters in the perfect forecast. The  
base case has a lower temperature starting point than  
EN-ROADS and a different mode of behavior of the  
CO2 concentration. The combination of these, even  
when including the reductions in emission-producing 
energy generation as shown with the perfect forecast and 
EN-ROADS case, will not result in an agreement. 

The EN-ROADS case does not meet the targeted 2.5 
degrees C by 2100 but is 4.5 C by 2100, which is a 
significant deviation. As with the base case, the major 
differences are the amount of nuclear power, hydropower, 
and renewables. The base case energy production 
breakdown in both models shows several significant 
differences. Specifically, the differences are mainly in the 
expected nuclear and biomass growth shown between 
Figure 5 and Figure 6. The assumptions of the rapid 
growth of nuclear power likely change oil and gas 
production and coal; those are the baseload power sources 
resulting in less oil and gas usage and less coal 
consumption. That likely leads to the differences in CO2 
concentration and, thus, temperature increase in the 
outcomes. 

 
Figure 5. Baseline case energy output/year 

 
Figure 6. EN-ROADS base case energy output/year 
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9. Methodology: Global Energy Supply: 
Model-based Scenario Analysis of 
Resource Use and Energy Trade 

This Analysis (Remme et al., 2007) aims to evaluate the 
long-term supply of fossil fuels relative to reserves and 
uses. Several cases are used to assess the energy supply 
under different scenarios and how that will alter the oil, 
gas, and coal trades until 2090. Understanding how the 
global energy system will change is essential to evaluate 
how various fossil fuel trade changes occur. This study 
concludes that CO2 capture must be increased to keep coal 
as a viable option by implementing policies intended to 
protect the climate. The volume of the global coal trade 
will depend heavily on climate policies [57]. For natural 
gas, unconventional sources increase in popularity as there 
are more CO2 emissions targets, likely due to replacing 
coal sources. The oil trade is not strongly influenced by 
CO2 emissions targets [57]; this may be because 
transportation will still rely heavily on oil soon.  

9.1. Base Case 
The base case is aligned with the IPCC A2 scenario, a 

higher-end emission scenario where the global surface 
temperature increase from 2000 is about 3.6 degrees C by 

2100 [58]. Some other aspects of the base case are a 
global GDP of $235 by 2100 in the year 2000 USD and a 
population of 9.8 billion by 2100 [57]. Another 
assumption of the base case is increased use of nuclear 
after 2040 and everyday use of renewables, with coal and 
gas being the critical energy supplies. 

Using the baseline case from EN-ROADS as a comparison 
with the BAS, there are some similarities and differences. 
The similarities are in which energy sources are the 
primary sources globally. In the BAS and EN-ROADS, 
coal, oil, and gas are much of the direct energy supply, 
with the remaining smaller fraction being nuclear, biomass, 
and others. The difference between the two cases is 
severalfold. First, the total magnitude of the primary 
energy supply in the BAS case is about 1800 EJ/year in 
2090 versus EN-ROADS, where just under 1200 EJ/year 
are needed by 2100. Second, the amount of nuclear power 
assumed in BAS is much higher than in EN-ROADS, 
where very minimal growth of nuclear is expected. Finally, 
the growth shape differs where EN-ROADS takes a slowing 
growth rate in the primary energy supply, whereas the 
BAS case has an exponentially increasing direct energy 
supply. Both scenarios start at similar levels, but whatever 
aspects of the TIMES model that drove the exponential 
growth of energy supply likely caused the difference in 
total energy supply between the two models over time; 
these changes can be seen clearly in Figure 7 and Figure 8. 

 
Figure 7. Base Case Energy supply [57] 

 
Figure 8. Base Case EN-ROADS [21] 
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10.  Results from Global Energy Supply, 
CO2 Case 

The CO2 mitigation case aims to reduce global annual 
CO2 emissions to 18 gigatons CO2 by 2090, corresponding 
to an atmospheric concertation of 550 ppm in 2090. The 
model develops the specifics of how this is met.  

For the CO2 Scenario, some policy choices are needed 
in EN-ROADS to meet the target of 18 gigatons of CO2 
emitted per year. Based on the CO2 scenario presented in 
the study, the significant changes from the baseline 
scenario are a reduction in coal and an increase in biomass 
and other energy sources. There is also an overall 
reduction in energy production to about 1600 EJ/year [57]. 
Attempting to model a similar set of choices in  
EN-ROADS does not result in the CO2 reduction expected. 
A high tax on coal and a significant incentive on 
bioenergy result in the 200 EJ/year reduction in energy 

supplied. However, the gigatons of CO2 per year 
decreased from 63 Gt/year to 53 Gt/year, respectively, not 
nearly down to the 18 Gt/year target. Part of the issue can 
be seen from the CO2 emissions starting point where  
EN-ROADS assumes 32 gt/year was emitted in 2000; this 
study adopted 20 gt/year. That 12 gt/year difference would 
result in a CO2 case as replicated in EN-ROADS of  
41 gt/year, which is still more than double the target. The 
results of the added policy changes can be seen in Figure 9 
and Figure 10. 

To achieve the targets of the CO2 case, even with  
the shift, a final CO2 emissions level of 30 gt/year in  
EN-ROADS is required. It is maintaining the high coal tax 
and subsiding bioenergy. Further energy efficiency and 
electrification in transport and buildings/industry cannot 
be used to influence the energy supply, as shown in  
Figure 11. This causes a very different primary energy 
mix with much less energy generated overall, partly due to 
increased energy efficiency (see Figure 12). 

 
Figure 9. CO2 Case Energy supply [57] 

 
Figure 10. CO2 Case in EN-ROADS Energy supply [21] 
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Figure 11. CO2 Emissions with the CO2 policies in EN-ROADS [21] 

 
Figure 12. Attempt to Match CO2 emissions from Study in EN-ROADS 

This approach better matches the shape of the CO2 emissions curve as provided in the study, shown in Figure 13, 
compared to Figure 14. 

 
Figure 13. CO2 emissions of the matched case 
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Figure 14. CO2 emissions from the CO2 Case from [57] 

11.  Results of Global Energy Supply 
Analysis 

There are apparent differences between EN-ROADS 
and this study that result in a primary energy mix that is 
not aligned. This lack of alignment makes comparisons of 
the results challenging, but some areas can be compared. 
The shape of the CO2 emissions curve to meet the policy 
target is similar for both models, although the magnitude 
of the change needed is different. Similarly, the changes to 
the primary energy supply are identical in some ways, but 
as with the CO2 emissions, the magnitude of these changes 
and the assumed rate of energy production growth differ. 

Global energy and emissions scenarios for effective 
climate change mitigation—Deterministic and stochastic 
cases with the TIAM model 

This study examined the feasibility of achieving the EU 
2 degree C target. A baseline scenario was developed to 
match the business-as-usual case [59]. The second case 
focused on an optimized energy system to achieve a  
2-degree C warming target.  

11.1. Baseline 
The baseline case GDP growth is the driving factor for 

much of the energy consumption over the next 80 years, 
and a planned GDP growth rate for the world economy is 
assumed to be 3.8% from the year 2000 to the year 2020, 
2.3% from 2020 to 2050, and 1.7 from 2050 to 2100. This 
can be compared with the EN-ROADS base case gross 
world product (GWP) growth, as shown in Table 5  
(Syri et al., 2008). 

EN-ROADS baseline case has a lower growth rate than 
planned in the study, but this can be adjusted to some 
extent, but the economic growth slider results in the 
following comparison in Table 6. 

Table 5. GWP for both baseline cases of EN-ROADS and the study 
[21,59] 

 GWP growth rate 

Year ENROADS Baseline Study Baseline 

2000 to 2020 2.2 3.8 

2020 to 2050 2.0 2.3 

2050 to 2100 1.4 1.7 

Table 6. Adjusted EN-ROADS GWP to get closer to Study [59] 

 GWP growth rate 

Year ENROADS - Matched Growth Study 

2000 to 2020 2.2 3.8 

2020 to 2050 2.2 2.3 

2050 to 2100 1.8 1.7 

 
Based on the above growth rates of the GWP, the 

resulting CO2 emissions from the energy supply with the 
base case economic assumptions were presented for the 
model. The result was a CO2 emission level in pentagrams 
CO2 equivalent to gigatons of about 60 gigatons of CO2 
from a starting point of 28 gigatons CO2 emitted, as 
shown in Figure 15. 

The baseline EN-ROADS results in a very similar  
CO2 emission level of 63 gigatons emitted but with a 
higher GWP growth rate, including the CO2 emissions 
increase to nearly 80 gigatons per year. The study reports 
that the atmospheric CO2 concentration in the baseline 
scenarios would be 610 ppm which is lower than the  
EN-ROADS estimate of between 700 and 750 PPM, 
depending on the GDP growth. The lower atmospheric 
concentration, in part, drives the difference in the global 
temperature increase in both models. The Baseline 
scenario in the study estimates a 3-degree C rise, while 
EN-ROADS estimates a 3.7-degree C increase, as shown 
in Figure 16. 
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Figure 15. Study baseline emissions [59] 

 
Figure 16. EN-ROADS CO2 emissions for the adjusted GWP (blue) and baseline (black) [59] 

The assumed limitations in Figure 17 on the global model's various energy resources control the optimization outcome. 

 
Figure 17. Limitations on resources used in the 2-degree C optimization [59] 
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12. Results of Climate Change Mitigation 

The optimization, with these limits in place, was run to 
achieve a target of 2 degrees C increase by 2100 in the 
study. Some critical areas noted as changes from the 
baseline emissions were an 11.8 gigaton CO2/year 
removal from carbon capture technologies in 2100 and an 
afforestation policy which reduced emissions by an 
additional 7.7 gigatons CO2 in 2080. This can be 
replicated in EN-ROADS with high afforestation and 
technological carbon removal growth, resulting in about 
20 gigatons of anthropogenic carbon removals, shown in 
Figure 18. 

Another greenhouse gas emissions change noted in the 
2 degrees C optimization was the reduction of methane 
emissions of 36% by the year 2100 as compared with the 
baseline. Additionally, N2O emissions were decreased by 
15% relative to the baseline in the same timeframe [59]. 
Using EN-ROADS, a similar amount of methane can be 

reduced with methane reduction policies, resulting in a  
20% reduction of N2O emissions on an equivalent scale to 
the study [21]. 

Now looking at the evolution of the global electricity 
supply for electricity generation can be compared to EN-
ROADS as long as it is assumed that most Oil 
consumption is used for transportation, not electricity 
generation. The total electric generation is about 84 
PWh/year, about 302 EJ/year of electricity production. 
The mix is heavily dominated by nuclear, hydro, and wind 
power, with other small sources and fossil fuels remaining 
below about 72 EJ/year, or 20 PWh/year, over the next 80 
years. EN-ROADS, with a similar set of energy sources, 
has about 10 P PWh/year of these fuel sources, including 
carbon capture and storage. One of the main differences 
between EN-ROADS and the study is the amount of 
nuclear power, which, even with maximum subsidies for 
nuclear, remains a small fraction in EN-ROADS, as seen 
in Figure 19. 

 
Figure 18. EN-ROADS anthropogenic carbon removal, green is afforestation, and the remainder is technological removal [21] 

 
Figure 19. 2 degree C global energy supply [59] 
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This energy mix and the previously mentioned carbon capture and other greenhouse gas reduction results in a CO2 
emission trend that is similar for both models. There is a difference in the order of magnitude and where the emissions 
turn around to increase, but in general, the results of both models agree, as shown in Figure 20 and Figure 21. 

 
Figure 20. EN-ROADS CO2 Emissions for a matched 2 Degree C Case [21] 

 
Figure 21. CO2 emissions from 2 degrees C case [59] 

Table 7. CO2 emissions for different climate sensitivity parameters 

 GT CO2/year in 2100  
Climate Sensitivity (Syri et al., 2008) EN-ROADS 

1.5 C 57 Lower than Min 
2 C Not studied 72.5 
3 C 15 35.6 

4.5 C Target not met 8.6 
5 C Not studied 2.5 
6 C Target not met Higher than max 

3 C (deterministic) 12 35.6 
 
Another variable examined in the study was the climate 

sensitivity parameter relative to the 2 C scenarios and its 

impact on global CO2 emissions. In this case, as the 
climate sensitivity parameter changes, various sliders in 
EN-ROADS will have to be increased or decreased to 
maintain the 2 C target, as shown in Table 7. The previous 
scenario, which met the 2-degree C target, was run using a 
climate sensitivity parameter of 3 C. 

13. Conclusion 

This literature review analyzed the new energy system 
modeling and validation techniques advances. A study of 
validation techniques was presented, and new novel 
validation techniques, such as model archeology, were 
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discussed. After validation techniques that energy 
modelers can use were reviewed, a demonstration of the 
comparative analysis was completed on three different 
energy scenarios. The results of the comparative analysis 
are discussed below.  

There are apparent differences between the outcome of 
the TIMES model and EN-ROADS. In the various 
analysis, two areas stick out. One is the difference in how 
CO2 concentration and global temperature are related, 
which is a complex interaction and makes some sense as 
an area where there may be disagreement. Another is the 
global CO2 concentration, which also has the potential for 
errors due to the complex nature of the carbon cycle [60]. 
Finally, another area of difference is the energy supply's 
growth rate, where the TIMES models are often more 
exponential than EN-ROADS. These differences make  
for some challenging comparisons but also help to  
identify areas of focus that may be worth investigating to 
understand what is driving the differences. 

Our case study results demonstrated the importance of 
validating and benchmarking models before making 
critical decisions. The results of the EN-ROADS model 
gave higher temperatures and concentrations of CO2, 
meaning investment decisions such as carbon sequestration 
could be over-capitalized. TIMES model results showed 
lower temperatures and CO2 concentrations. This means 
that climate protection investments based on the results of 
this model may not be appropriate and adequate. 
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